
www.manaraa.com

Autonomous Mobility and Manipulation of a 9-DoF WMRA

by

William Garrett Pence

A thesis submitted in partial fulfillment

of the requirements for the degree of
Master of Science

Department of Computer Science and Engineering
College of Engineering

University of South Florida

Major Professor: Yu Sun, Ph.D.

Redwan Alqasemi, Ph.D.
Rajiv Dubey, Ph.D.

Srinivas Katkoori, Ph.D.

Date of Approval:

October 20, 2011

Keywords: Rehabilitation, Robotics, Mobile Manipulation, Visual

Servoing, ADL

Copyright © 2011, William Garrett Pence

www.manaraa.com

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 1502033

Copyright 2011 by ProQuest LLC.

UMI Number: 1502033

www.manaraa.com

Dedication

This work is dedicated to my family, friends, colleagues, the

women in my life that inspired me to continue on in my education, and

especially to my beloved nephew Owen who lost his battle with

leukemia yet inspired me with his strength, courage, and happiness.

www.manaraa.com

Acknowledgements

I would like to thank all of my committee members for their

support and contributions to this work. Dr. Redwan Alqasemi and Dr.

Yu Sun were incredible mentors and contributed greatly to this work

and the theory behind it. I especially thank Dr. Redwan Alqasemi and

Dr. Rajiv Dubey for pioneering and implementing combined WMRA

control that this work builds on. I would like to thank Dr. Rajiv Dubey

for his mentoring, contributions, and financial support. Dr. Srinivas

Katkoori was my inspiration for pursuing research and is an excellent

professor.

I also thank all the members of the Center for Assistive,

Rehabilitation and Robotics Technologies for their contributions to the

project, and especially Paul Mitzlaff for handling much of the hardware

and electrical portions of the projects, and Fabian Farelo for

collaboration on dual-trajectory WMRA control.

www.manaraa.com

i

Table of Contents

List of Figures ... iii

Abstract ... v

Chapter 1 Introduction .. 1

1.1 Motivation ... 1

1.2 Goals .. 2

Chapter 2 Background .. 7

2.1 Assistive Robots ... 8

2.2 Mobile Manipulators .. 9

2.3 WMRAs ... 11

2.4 WMRA Control .. 17

2.5 Vision-Based Control of Mobile Manipulators 24

2.6 Visual Servoing of the 9-DoF WMRA 27

Chapter 3 Approach .. 30

3.1 Camshift Tracking .. 30

3.2 Visual Servoing .. 31

3.3 Potential Fields ... 34

3.4 Fusing Visual Servoing and Potential Fields 36

3.5 Task Execution ... 37

www.manaraa.com

ii

Chapter 4 Grasping .. 40

4.1 SIFT Feature Extraction ... 40

4.2 Image-Based Visual Servoing .. 42

4.3 Task Execution ... 46

Chapter 5 Physical Testing of ADL Tasks 48

5.1 Description of ADL Tasks ... 49

5.2 Physical Testing Results .. 51

Chapter 6 Discussion and Conclusion .. 57

6.1 Discussion ... 57

6.2 Conclusion ... 58

6.3 Future Work .. 59

References ... 61

Appendices ... 64

Appendix A Source Code ... 65

About the Author.. End Page

www.manaraa.com

iii

List of Figures

Figure 1.1: Control flow of this work ... 6

Figure 2.1: The DeVAR system developed at Stanford University (5) .. 9

Figure 2.2: Applied Resources Raptor assistive arm (9) 12

Figure 2.3: Exact Dynamics Manus assistive arm (10) 13

Figure 2.4: Kinova JACO assistive arm (11) 13

Figure 2.5: WMRA developed by CARRT at USF 15

Figure 2.6: Coordinate frames of the WMRA (13) 18

Figure 3.1: Proximity sensors mounted on the WMRA 34

Figure 3.2: Stereoscopic camera on the WMRA 35

Figure 3.3: Disparity map and zone areas 36

Figure 3.4: GUI for approach phase .. 38

Figure 4.1: Sample scene (left) and goal (right) image 42

Figure 4.2: GUI for grasping phase ... 47

Figure 5.1: The 9-DoF WMRA system used for testing 48

Figure 5.2: Camera and proximity sensor on gripper assembly 49

Figure 5.3: Weights during the approach phase 52

Figure 5.4: Translational velocities during the grasping phase 53

Figure 5.5: Rotational velocities during the grasping phase 54

www.manaraa.com

iv

Figure 5.6: Grasping the goal object ... 55

Figure 5.7: WMRA at the end of the ADL task 56

Figure 6.1: Sample BCI and interface screen 59

www.manaraa.com

v

Abstract

The wheelchair-mounted robotic arm (WMRA) is a 9-degree of

freedom (DoF) assistive system that consists of a 2-DoF modified

commercial power wheelchair and a custom 7-DoF robotic arm.

Kinematics and control methodology for the 9-DoF system that

combine mobility and manipulation have been previously developed

and implemented. This combined control allows the wheelchair and

robotic arm to follow a single trajectory based on weighted

optimizations. However, for the execution of activities of daily living

(ADL) in the real-world environment, modified control techniques have

been implemented.

In order to execute macro ADL tasks, such as a “go to and pick

up” task, this work has implemented several control algorithms on the

WMRA system. Visual servoing based on template matching and

feature extraction allows the mobile platform to approach the desired

goal object. Feature extraction based on scale-invariant feature

transform (SIFT) gives the system object detection capabilities to

recommend actions to the user and to orient the arm to grasp the goal

www.manaraa.com

vi

object using visual servoing. Finally, a collision avoidance system is

implemented to detect and avoid obstacles when the wheelchair

platform is moving towards the goal object. These implementations

allow the WMRA system to operate autonomously from the beginning

of the task where the user selects the goal object, all the way to the

end of the task where the task has been fully completed.

www.manaraa.com

1

Chapter 1 Introduction

1.1 Motivation

According to the 2010 US Census Bureau report on disabilities,

about ten percent of the working-age population has a disability, and

there exists a great disparity among the employment-to-population

ratio for citizens with disabilities (1). Assistive arms have proven to be

effective devices for users with disabilities. These robotic arms can

assist users in workplace environments to greatly improve capabilities

for populations with disabilities in the workforce. They can also be

used as assistive devices throughout users’ daily lives to improve their

independence. Several commercial robotic arms have been developed

specifically for assistive purposes, and can also be mounted on

wheelchairs, such as the iARM and JACO (2).

Even though WMRAs reduce dependence on caregivers,

teleoperation of the robotic arm and coordination between the

wheelchair and robotic arm operations still prove to be difficult for

many users. For users that are completely locked-in, such as in many

cases of amyotrophic lateral sclerosis (ALS), users are unable to

www.manaraa.com

2

practically teleoperate the robotic arm using a brain-computer

interface (BCI) (3). For these reasons, it becomes desirable to design

a WMRA system that executes complete ADL tasks from beginning to

end with minimal user input using both the wheelchair motion and

robotic arm manipulation. A WMRA system that can execute complete

macro ADL tasks could greatly improve the independence of users with

disabilities without the great cognitive burden of teleoperation.

In order to allow for fully autonomous mobility and manipulation

in the real-world environment, several control algorithms must be

implemented on the WMRA system. A graphical user interface (GUI)

will first present the user with a live view from the eye-in-hand camera

mounted on the end effector of the robotic arm. After the user selects

the goal object, the WMRA system must approach this object while

avoiding possible obstacles in its path. This is done with visual

servoing using template matching and feature extraction (4). A

collision avoidance algorithm keeps track of obstacles and avoids them

if necessary. Once the goal object has been approached, high-

resolution feature extraction is executed for the purposes of object

detection and grasping.

1.2 Goals

Control methods for the complete 9-DoF WMRA system

combining mobility and manipulation have previously been

www.manaraa.com

3

implemented (3). These control systems will be introduced in the next

chapter since this work builds on the existing control methodology.

The main goal of this work is to use sensory data to implement control

algorithms that allow autonomous execution of complete ADL tasks.

Another method of control for the WMRA is by using an image-based

visual servoing (IBVS) technique described in (2). Visual servoing is

more desirable for the physical implementation since it is robust

against dynamic moving environments and can overcome imprecisions

of the hardware. We can use an IBVS visual servoing technique along

with a monocular eye in hand camera mounted on the end effector to

provide autonomous mobility and manipulation throughout the

execution of ADL tasks. The input to the visual servoing system is the

goal object selected by the user as well as the vision data, and the

output is a set of velocities to control WMRA motion using Cartesian

control. Other systems have demonstrated that visual servoing can be

a reliable form of control for a 6-DoF assistive robotic arm as in (3)

and (4). However, these implementations have their shortcomings as

neither uses a physical WMRA system with combined mobility and

manipulation, and neither implement a true 3-dimensional IBVS

approach.

Although it may be intuitive to use this visual servoing system

from beginning to end, there are some pitfalls to the physical

www.manaraa.com

4

implementation. The method of feature extraction we use is very

robust, but in cluttered environments where the goal object is far

away, its reliability is very low due to great noise in the image. Since

our system can use the wheelchair platform to approach objects very

far away, it is possible that goal objects may be too far away for

feature extraction to provide reliable data. Therefore, the

implementations of this work can be split into two main sections that

deal with two phases of the task execution: approaching the goal

object and grasping the goal object. The flow from the approach phase

to the grasp phase is controlled using weighted optimization to change

the motion from strictly wheelchair motion (at the beginning of the

task) to strictly arm motion (at the end of the task). This weighted

optimization will be discussed in detail in the WMRA Control.

After the user has selected the object in the camera view,

template matching and feature extraction are used to keep track of

where the object is in the environment and to allow for visual

servoing. The WMRA platform keeps track of the goal object and

moves towards it. During approach, mostly the mobile wheelchair

platform is moving while the robotic arm is moving very little. The

system also must be able to detect obstacles in the path to the goal

object and navigate around them autonomously, if possible. If the

system cannot autonomously navigate around the obstacles, the user

www.manaraa.com

5

is prompted to move the wheelchair in an assisted teleportation mode.

The approach algorithm fuses visual servoing and potential fields

collision avoidance techniques. At the end of the approach phase, the

WMRA is close enough to the goal object such that the robotic arm can

reach and grasp the goal object.

During grasping, the robotic arm autonomously orients itself to

match the grasping orientation for the particular object, and then

grasps the goal object with the gripper assembly mounted on the end

effector. Using the eye-in-hand camera, the goal object is recognized

using feature extraction and a set of objects in a database. Feature

extraction allows the system to recognize the type of object as well as

the grasping orientation. An image-based visual servoing technique is

used to position and orient the manipulator. At the end of the grasping

phase, the task is completed and the goal object can be delivered to

the user on the wheelchair. Figure 1.1 visualizes the control flow

implemented in this work.

www.manaraa.com

6

Figure 1.1: Control flow of this work

Finally, this work will present the physical testing results of these

implementations on the WMRA during real-world ADL tasks. Several

ADL tasks will be tested and motion and accuracy results will be

presented. The next chapters will go into details on the background of

the system and control algorithms implemented, and then the testing

results will be presented along with a discussion and conclusion.

www.manaraa.com

7

Chapter 2 Background

There is a great deal of opportunity for assistive robotics to

increase independence of users with disabilities. Robotic devices of all

kinds have helped users with disabilities to become more capable in

the workplace as well as decrease their dependence on caregivers.

Assistive robots can help to decrease the disparity between

employment among persons with disabilities and persons without

disabilities. In this section, we will outline several assistive robotic

devices that have been previously developed and implemented. We

will also discuss mobile manipulators, in which some form of assistive

robotic arm is attached to a mobile platform. In addition, we will also

discuss the control methodology for mobile manipulation as some

problems arise in the control with mobile manipulators. We will

describe the WMRA mobile manipulator in detail as this is the assistive

system our work will deal with. Finally, we will cover the control of the

9-DoF WMRA system developed at the Center for Assistive,

Rehabilitative, and Robotics Technologies (CARRT).

www.manaraa.com

8

2.1 Assistive Robots

Today, the existence of robots in the world is commonplace.

Robotics technologies have been used in various applications such as

manufacturing, remote teleoperation, research, and many more.

Arguably, the most important application of robotics deals with

creating assistive devices that greatly improve the independence of

humans with disabilities. Development of assistive robotics began with

non-mobile workstation robots (8), which has led most recently to the

development of lower-cost mobile devices that can be mounted in

various places, or to a mobile platform.

Research with assistive robotics began with workstation robots,

in which a robotic manipulator was permanently affixed to a workplace

so that an operator could use the arm to execute tasks. The advantage

to development of workstation robots is that they only need to be

designed based on the set of tasks that are possible in its workplace

location (8). Instead of creating a general-purpose robot, one could be

built for a specific set of tasks inside the workplace. One example of a

workstation robot was the Desktop Vocational Assistant Robot

(DeVAR) developed at Stanford University (5). DeVAR used a

commercial PUMA-260 robot mounted upside down on an adjustable

track that allowed the arm to move back and forth in the workstation.

www.manaraa.com

9

A gripper was customized that was suitable for its workplace-oriented

tasks. Figure 2.1 shows the DeVAR system.

Figure 2.1: The DeVAR system developed at Stanford University (5)

Although workstation robots were effective for certain tasks

inside a structured workplace, they were only useful at that specific

location. For users that moved around to different locations, it is more

desirable to have a smaller general-purpose robot that could be used

in any location. Creating a mobile assistive robot that the user could

carry with them would have a far greater impact on a users’

independence.

2.2 Mobile Manipulators

Mobile manipulators can be defined simply as a robotic arm

attached to a moving platform. These devices can be found in various

www.manaraa.com

10

different fields ranging from space exploration to military surveillance.

Mounting a robotic arm on a mobile platform greatly improves the

workspace of the system by allowing the manipulator to reach any

location that the mobile platform can travel to. As technology has

improved, commercially-available robotic arms have become smaller

and lighter, allowing them to be easily integrated on a wide array of

mobile platforms.

Control of mobile manipulation has been studied extensively in

research. The main advantage to mobile manipulators is that most of

them inherently have redundancy (9), which allows them to be applied

to several special-purpose applications. The kinematics of a 5-DoF

manipulator and 2-DoF mobile platform have been described in (6)

and allow a system that provides coordinated control to move the

platform such that the target is within the workspace of the

manipulator. This coordinated approach shows one control method for

a redundant mobile manipulator. Another work described in (7)

detailed combined kinematics for a non-holonomic mobile platform,

such as a power wheelchair. Redundancy in the system was resolved

using the projected gradient and reduced gradient optimization

methods. In this work, a sample trajectory was followed where the

manipulator was kept in a pre-specified orientation while the mobile

www.manaraa.com

11

platform followed a circle. In these works, both the manipulator and

mobile platform followed the same trajectory.

Other works have allowed for control systems that create

separate trajectories of the manipulator and mobile platform. One

example of this work is described in (8), where kinematic

redundancies were resolved using separate controls for mobility and

manipulation. By allowing separate trajectories for the manipulator

and mobile platform, specialized tasks can be more easily executed.

We continue describing coordinated mobility and manipulation control

in a later section relating specifically to the WMRA system.

2.3 WMRAs

Many users with disabilities depend on a power wheelchair

already, and mounting a portable robotic arm on that platform allows

them to use the manipulator any place their wheelchair can go. A

WMRA consists of a robot arm mounted on a mobile wheelchair

platform. In the 1990s and early 2000s, two popular robotic arms

were developed that could be mounted on a power wheelchair. The

first of these was the Raptor robotic arm developed by Applied

Resources (see Figure 2.2), which consists of a 4-DoF robotic arm and

a planar gripper (9). The Manus manipulator (see Figure 2.3) is

perhaps the more popular robotic arm, developed by Exact Dynamics

(10). The Manus (or the iARM, which is a modified version of Manus) is

www.manaraa.com

12

a 6-DoF robotic arm with a planar gripper. It was designed for

Cartesian control using a joystick or keypad interface. The latest

commercially-available robotic arm is the JACO (see Figure 2.4),

developed by Kinova in 2009. The JACO consists of a 6-DoF robotic

arm with a 3-finger gripper assembly. The main advantage to JACO is

that it uses a 3-axis joystick interface, which makes teleoperation in

Cartesian modes much easier than the Manus.

Figure 2.2: Applied Resources Raptor assistive arm (9)

www.manaraa.com

13

Figure 2.3: Exact Dynamics iARM assistive arm (10)

Figure 2.4: Kinova JACO assistive arm (11)

These modern commercially-available robotic arms can be used

for many general purpose applications, but are designed specifically to

be used as a WMRA. Many persons with disabilities desiring an

assistive robotic arm are already dependent on a power wheelchair

(15), so it is intuitive to mount an appropriate manipulator onto their

wheelchair platform so that they can use it throughout the course of

www.manaraa.com

14

their daily lives. One important aspect of WMRA design is where to

mount the manipulator such that it does not hinder the user’s or

wheelchair’s movement and is able to be intuitively teleoperated (12).

Through several research studies, WMRAs have proven to be effective

assistive devices for users with disabilities.

Even though WMRAs have had a great impact on the

independence of users with disabilities, their design and control can

still be improved. Commercial manipulators such as the iARM and

JACO consist of 6-DoF robotic arms, which are usually suitable for

reaching a large workspace. However, expanding the design of the

manipulator to a 7-DoF robotic arm allows for many optimizations

through the redundant DoF. A 7-DoF system allows many different

arm configurations while reaching the same end effector position and

orientation. For the WMRA application, this is a very desirable feature

for obstacle avoidance since the workspace of the robotic arm is

confined to areas outside the wheelchair so that no joints come in

contact with the user sitting on the wheelchair. Optimization of the

redundant system allows the 7-DoF robotic arm to reach its desired

positions more efficiently and based on the criterion than a 6-DoF

robotic arm. Additionally, joint limit avoidance and singularity

avoidance become more robust since a redundant DoF is available for

manipulation.

www.manaraa.com

15

The WMRAs developed at the Center for Assistive, Rehabilitation

and Robotics Technologies consist of a 2-DoF power wheelchair and a

7-DoF robotic arm, providing for a complete 9-DoF system (see Figure

2.5). The robotic arm has 7 revolute joints with a gripper mounted on

the end effector designed for generic ADL tasks. The power wheelchair

is a standard wheelchair that is commercially available and has been

modified. The advantage to the CARRT WMRA systems is mainly the

added performance of the 7-DoF manipulator and combined control of

both mobility and manipulation.

Figure 2.5: WMRA developed by CARRT at USF

Interface devices for WMRAs have traditionally been

cumbersome for users and have a very large learning curve (15).

Common interface devices for commercially-available WMRAs consist

mainly of joysticks, keypads, eye gaze, voice recognition, and sip and

puff devices. The large learning curve exists since it is not intuitive for

humans to teleoperate a robotic arm in 3-dimensions using a 2-

www.manaraa.com

16

dimensional interface device. Integrating 3-dimensional joysticks as

with the JACO makes the device easier to teleoperate, but there still

exists a learning curve for users to become practically efficient with

the device. In order to improve control of WMRA systems beyond that

of teleoperation using 3-dimensional input devices, it becomes

necessary that the system become more task-oriented by adding

autonomous capabilities to it.

Even though WMRA devices are mounted on the wheelchair

platform, their control systems are still separated. In order to move

the mobile wheelchair platform, the user must operate it with its

dedicated joystick interface device, and then to manipulate the WMRA,

the user must switch to the manipulator’s interface device. In order to

simplify the control systems, it becomes desirable to integrate both

the wheelchair and WMRA control through a single interface device. To

build a robust task-oriented control system, it also becomes desirable

to coordinate control of both the wheelchair and robotic arm. To

implement a robust task-oriented WMRA platform, control must take

both mobility and manipulation into account.

www.manaraa.com

17

2.4 WMRA Control1

The visual servoing control system developed in this work

requires coordinated control of both mobility and manipulation. For the

7-DoF manipulator, numerical solutions exist to have it follow a

desired trajectory (13). The other 2-DoF in the WMRA system are

provided by the nonholonomic power wheelchair. The 2-DoF consist of

linear translation and rotation about a fixed axis. When controlling the

mobile platform, velocities must be given for the linear translation as

well as rotation. We use the weighted least-norm solution with

singularity-robust pseudo inverse to resolve redundancies in the

mobile manipulator system. As we will discuss later, we also use this

weighted optimization to control coordination of the wheelchair

platform and robotic arm during executed ADL tasks. Combination of

the robotic arm and wheelchair kinematics is done using Jacobian

augmentation, which can give the flexibility of using conventional

control and optimization methods without compromising the total

coordinated control. Full kinematics and detailed equations can be

found in a previous work concentrating on the control system (13).

1 WMRA control theory is produced from (13)

www.manaraa.com

18

Figure 2.6: Coordinate frames of the WMRA (13)

Assuming that the manipulator is mounted on the wheelchair

with L2 and L3 offset distances from the center of the differential drive

across the x and y coordinates respectively, and L1 is the distance

between the wheels (see Figure 2.6 for L-distances), then the mapping

of the wheels’ velocities to the manipulator’s end effector velocity

along its coordinates is defined by:

 ̇ ̇ (2.1)

where Jc and Jw are the Jacobian matrices that map the arm base

velocities to the end-effector velocities (without arm motion) and the

www.manaraa.com

19

wheels’ velocities to the arm base velocities, respectively. The

wheelchair induced end effector velocity ̇ and wheelchair velocity ̇

are:

 ̇ [̇ ̇ ̇ ̇ ̇ ̇] (2.2)

 ̇ [
 ̇

 ̇

] (2.3)

with:

[

 [] [

]

[] []
[]]

 (2.4)

[

]

 (2.5)

where Pxg and Pyg are the x-y coordinates of the end-effector relative

to the arm base frame, Ø is the angle of the arm base frame (which is

the same as the rotation angle of the wheelchair base), and L5 is the

wheels’ radius (see Figure 2.6). The above Jacobian and the Jacobian

of the arm are combined together to control the end-effector.

The wheelchair will move forward when both wheels have the

same speed and direction while rotational motion will be created when

both wheels rotate at the same velocity but in opposite directions.

Since the wheelchair’s position and orientation are our control

www.manaraa.com

20

variables rather than the left and right wheels’ velocities, a relationship

between the wheels’ rotational velocities and the linear and rotational

velocities of the wheelchair was derived ̇ ̇ :

 [
 ̇

 ̇

] [

] [
 ̇
 ̇
] (2.6)

7-DoFs are provided by the robotic arm mounted on the

wheelchair. From the DH parameters of the robotic arm specified in an

earlier publication (13), the 6x7 Jacobian that relates the joint rates to

the Cartesian speeds of the end effector based on the base frame is

generated according to Craig’s notation (14):

 ̇ ̇ (2.7)

where ̇ [̇ ̇ ̇ ̇ ̇ ̇]

is the task vector, ̇

[̇ ̇ ̇ ̇ ̇ ̇ ̇]

is the joint rate vector, and JA is the

robotic arm’s Jacobian. By combining the wheelchair and arm

kinematics using Jacobian augmentation, we find the total system

kinematics (13).

Redundancy is resolved in the algorithm using weighted S-R

inverse of the Jacobian to give a better approximation around

singularities, and to use the optimization for different subtasks.

Manipulability measure (15) is used as a factor to measure how far the

current configuration is from singularity. This measure is defined as

www.manaraa.com

21

 √ . The S-R Inverse of the Jacobian in this case is

defined as:

 (2.8)

where I6 is a 6x6 identity matrix and k is a scale factor. It has been

known that this method reduces the joint velocities near singularities,

but compromises the accuracy of the solution by increasing the joint

velocities error. Choosing the scale factor k is critical to minimize the

error. Since the point in using this factor is to give approximate

solution near and at singularities, an adaptive scale factor is updated

at every time step to put the proper factor as needed:

 ⟨
 (

)

 (2.9)

where w0 is the manipulability measure at the start of the boundary

chosen when singularity is approached, and k0 is the scale factor at

singularity.

Weighted Least Norm solution proposed by (16) can be

integrated to the control algorithm to optimize for secondary tasks. In

order to put a motion preference of one joint rather than the other

(such as the wheelchair wheels and the arm joints), a weighted norm

of the joint velocity vector can be defined as:

 | | √ (2.10)

www.manaraa.com

22

where W is a 9x9 symmetric and positive definite weighting matrix,

and for simplicity, it can be a diagonal matrix that represent the

motion preference of each joint of the system. For the purpose of

analysis, the following transformations are introduced:

 (2.11)

 (2.12)

Using (2.8), (2.10), (2.11), and (2.12), it can be shown that the

weighted least norm solution integrated to the S-R inverse is:

 | |
 ̇ (2.13)

The above method has been used in the 9-DoF WMRA system

with the nine control variables (V) that represent the seven joint

velocities of the arm and the linear and angular wheelchair’s velocities.

An optimization of criteria functions can be accomplished when used in

the weighting matrix W.

The criteria functions used in the weight matrix for optimization

can be defined based on different requirements. For the robotic arm,

the physical joint limits can be avoided by minimizing an objective

function that represents this criterion. One of these mathematical

representations was proposed by (16) as follows:

 ∑

 (2.14)

where qi is the angle of joint i. This criterion function becomes 1 when

www.manaraa.com

23

the current joint angle is in the middle of its range, and it becomes

infinity when the joint reaches either of its limits. The gradient

projection of the criterion function can be defined as:

 (2.15)

When any particular joint is in the middle of the joint range,

(2.15) becomes zero for that joint, and when it is at its limit, (2.15)

becomes infinity, which means that the joint will carry an infinite

weight that makes it impossible to move any further.

The diagonal weight matrix W can be constructed as:

[

 |

|

 |

|

]

 (2.16)

where wi is a user-set preference value for each joint and wx and wφ

are the weights associated with the position and orientation of the

wheelchair. These values can achieve the user preference if joint limits

are not approached and wheelchair motion is at its desired position.

www.manaraa.com

24

We will later define criteria functions for the user-set preference

values of the joints of the manipulator as well as those for the

wheelchair. This weighted optimization using the weight matrix W

allows us to coordinate mobility and manipulation during all stages of

the autonomous task execution.

2.5 Vision-Based Control of Mobile Manipulators

Vision-based control has become popular in both fixed-base

manipulators as well as mobile manipulators. The advantages of

vision-based control become more prevalent in physical

implementations of robotic systems where dynamic environments and

inaccurate hardware are experienced. Vision-based control strategies,

such as visual servoing, allow a system to approach and grasp objects

by using a goal image saved in a database. This image is matched with

the object in the camera image using some form of feature extraction,

and the robot is manipulated until the camera image matches the goal

image. Since this control strategy relies on live visual feedback

information rather than strictly position-based control, it is able to

overcome hardware inaccuracies such as slipping joints on a robotic

arm or encoder position errors. Vision-based control is also robust

against moving objects in a dynamic and cluttered environment since

the control uses live feedback from the scene.

www.manaraa.com

25

Image-based visual servoing (IBVS) is perhaps the most popular

and simplest form of visual servoing. It provides a correspondence

between matched features in the camera image and goal image and

gives as output a velocity controller for the robot system. Therefore its

control strategy is strictly based on image features rather than world

positions. The features used in IBVS are immediately available in the

images. Position-based visual servoing (PBVS) is another visual

servoing control strategy in which 3D position of the goal object is

estimated using various different methods. In this work, we

concentrate on the IBVS technique. We will cover the mathematics

behind the IBVS algorithm later on in Chapter 4. Visual servoing

approaches are also defined in great detail in works such as (17) and

(18), in which visual servoing in this work is based on.

Several works demonstrate an application of visual servoing in

fixed-base as well as mobile manipulators. In (19), the Manus robotic

arm was controlled using a visual servoing technique relying on color-

based feature extraction. This implementation was fairly reliable at

being able to grasp objects in an unstructured environment, but

problems arose when objects with poor color information were

selected. Rather than relying strictly on color information for tracking

the goal object, in (3) the work was improved by using scale-invariant

feature transform (SIFT) to track features between the goal and

www.manaraa.com

26

camera image. This allowed a very robust visual servoing algorithm

working towards autonomous grasping. The downside to this

implementation is that the image of the goal object’s desired pose

must be saved in a database such that the environment must be

somewhat structured. In a separate project (4), the Manus arm was

used along with SIFT and a 2 1/2D visual servoing technique to

autonomously grasp objects. This work split the motion into gross and

fine motion, with different control systems for each phase. This

approach did not implement a true 3D IBVS technique, but allowed

objects to be grasped autonomously.

The aforementioned works concentrated on a fixed-base

manipulator, so the workspace was limited to what the robotic arm

could reach. A visual servoing technique extended to a mobile

manipulator can greatly increase the workspace of the system, but

also adds complexities concerning coordinated control of mobility and

manipulation, collision avoidance for obstacles in the environment, and

the possibility of losing the features being tracked due errant to

movement of the mobile platform. There exist some works dealing

with visual servoing of mobile platforms, but they typically involve

very simple systems with low DoF (9). A more robust work that

implements IBVS on a nonholonomic mobile manipulator with a 5-DoF

robotic arm (20) also uses Q-learning to aid the mobile platform from

www.manaraa.com

27

losing track of the visual features. This work decouples control of

mobility and manipulation such that the mobile platform moves until

the goal object is within the workspace of the manipulator, and then

the manipulator grasps the object.

While these implementations prove that visual servoing is a

robust and reliable control technique for fixed-base and mobile

manipulators, they all have their shortcomings. Although some of the

works provide an end to end autonomous solution for grasping objects

(7), they do not use a true 3D IBVS technique. The works

concentrating on fixed-base manipulators using the Manus arm can

only grasp objects near the fixed-base. Expanding this work to a

mobile manipulator such as a WMRA can greatly increase the abilities

of the system. Works dealing with visual servoing of mobile

manipulators use very simple robotic arms. Using a 7-DoF manipulator

on the mobile platform would greatly increase the performance and

capability of the entire system. Previous works focus on decoupling

control of mobility and manipulation, but by coordinating these

controls, the system can become much more stable and less choppy.

2.6 Visual Servoing of the 9-DoF WMRA

In this work, we desire to implement full 3D IBVS on the 9-DoF

WMRA introduced above. To address the shortcomings of other works,

we develop a control system that controls combined mobility and

www.manaraa.com

28

manipulation simultaneously throughout the task. In order to design a

reliable visual servoing control for the physical WMRA, we split the

task into two phases.

During the approach phase, we use visual servoing with a single

tracked point based on camshift (21), which gives us 2D velocity

control initially. At the beginning of the approach phase, mostly

wheelchair motion is used with limited arm motion. As the WMRA

approaches the goal object, wheelchair motion should decrease as arm

motion increases. Once a threshold distance from the end effector to

the goal object is reached, we instantly switch to 3D IBVS used during

the grasping phase.

By the time we reach the grasping phase and begin using 3D

IBVS, the wheelchair system has slowed to a stop and the arm motion

becomes entirely unrestricted. We use SIFT to extract and match

features between the camera and goal image. Using SIFT with IBVS,

and at least three matched points, we extract velocity control for full

6-DoF control based on the end effector of the WMRA. The arm

positions and orients with respect to the IBVS velocity control until the

velocities reach zero. At this point, the desired position and orientation

has been reached and the system can now grasp the goal object. The

gripper paddles are then closed to grasp the goal object, and it is

www.manaraa.com

29

delivered via pre-programmed position control. The task has now been

completed using both approach and grasping phases.

www.manaraa.com

30

Chapter 3 Approach

During the approach phase, the WMRA system uses combined

mobility and manipulation to approach the goal object such that it can

be grasped. The goal object is selected by the user through the GUI

screen and is tracked using methods described below. Motion is

controlled using weighted optimization, and the criteria functions

based on the image data are defined in the following sections. A

potential fields collision avoidance method is also implemented during

the approach phase to avoid possible obstacles detected using

proximity sensors. At the end of the approach phase, the system will

be in a position and orientation to be able to grasp the goal object

since it has been tracked throughout the phase.

3.1 Camshift Tracking

Since we are splitting up the autonomous task into approach and

grasping phases, we can simplify the approach phase. Since mainly

gross motion is required during this phase, it is not necessary to orient

the manipulator during approach. We can use strictly 2-dimensional

visual servoing to center the mobile platform and manipulator on the

www.manaraa.com

31

goal object as it approaches while controlling coordination of mobility

and manipulation using weighted optimization introduced in Section

2.4 above.

At the beginning of the approach phase, the user is presented

with a live camera feed of the workspace. They select the goal object

through the GUI by selecting that area of the camera image. Since we

therefore have a selection of the area of the scene we need to

approach, we can use a simple camshift technique implemented in the

OpenCV open source computer vision library (21). Our camshift

function returns the centroid of the matched object in the scene

image. This single centroid point is used for 2-dimensional visual

servoing as described in the following section.

3.2 Visual Servoing

For the approach phase, we use a method similar to visual

servoing, but since mostly wheelchair motion is being utilized, it is only

necessary for 2-dimensional visual servoing. In order to center on the

selected area, we must adjust wheelchair motion so that the object’s

centroid reaches the center of the image plane, denoted by a=(cu,cv).

Wheelchair motion is controlled through wx and wφ from (2.16), which

control wheelchair translation and rotation about its fixed axis,

respectively. Since we wish to initially use mostly wheelchair motion

during this phase, we set w1 through w7 using a criteria function based

www.manaraa.com

32

on distance so that the manipulator will move more as the WMRA

system approaches the goal object.

The wheelchair translation wx is mainly related to the distance

from the camera frame to the goal object, in the camera frame’s z-

direction. We can approximate this distance by means of proximity

sensor or disparity map generated from a stereoscopic camera

mounted on the end effector. Since wx is directly proportionate to the

distance on z, we have:

 (3.1)

where λ is an appropriate gain, z is the approximated distance from

the camera frame to the goal object, and zi is the initial distance from

the camera frame to the goal object.

The desired wheelchair rotation wφ is directly related to the 2-

dimensional visual servoing error. Since setting wφ is only able to

minimize the error in the camera frame’s x-direction, we compute the

error e(t)x using:

 (3.2)

where sx is the current location of the centroid of the matched

template relating to the x-direction, and cu is the desired location of

the template which is the center of the image plane. Since wφ is

directly proportionate to e(t)x computed in (3.2), we have:

www.manaraa.com

33

 (3.3)

where λ is an appropriate gain and e(t)x max is the maximum possible

error in the x-direction.

We also desire to set the user-set preference values for w1

through w7 in order to control arm motion. We should use mostly

wheelchair motion when the goal object is far away, and use mostly

arm motion when the goal is very close. Therefore, we define the

arm’s user-set preference values for all 7 joints from (2.16) as:

 (3.4)

where λ is an appropriate gain and z is the approximated distance

from the camera to the goal object. When the distance is high, we

have a large weight for arm motion so that very little arm motion is

allowed. When the distance is low, we have a small weight for arm

motion so that full arm motion is allowed.

Using equations (3.1), (3.3), and (3.4) we can set wheelchair

motion so that the WMRA will approach the selected goal object area.

As the wheelchair approaches the goal object, translational velocity

resulting from wx will decrease until it reaches zero, while the

rotational velocity will be manipulated such that the WMRA centers on

the goal object. Once the WMRA system has approached a predefined

distance from the goal object such that the object is within the

www.manaraa.com

34

workspace of the robotic arm, the grasping phase begins as described

in Chapter 4.

3.3 Potential Fields

The WMRA system has been designed to be a modular platform

where proximity sensors of various kinds can be mounted in several

different orientations. In order to give physical distance information for

our collision avoidance, we use simple infrared proximity sensors

mounted on the forward part of the mobile platform. Since mostly

forward motion is used in our visual servoing autonomous task

execution, we are mainly only concerned with obstacles that may exist

in the forward direction of the WMRA.

Figure 3.1: Proximity sensors mounted on the WMRA

www.manaraa.com

35

Figure 3.1 shows the positions and range cones of the four

infrared proximity sensors mounted on the WMRA mobile platform. We

use Sharp GP2Y0A21YK sensors mounted on brackets.

Figure 3.2: Stereoscopic camera on the WMRA

In addition to the infrared proximity sensors, we can also use a

stereoscopic camera to create a disparity map. A Point Grey Research

BumbleBee 2 camera is mounted on the end effector, as seen in Figure

3.2. We use Point Grey’s API to extract a disparity map. Similar to the

physical sensors, we group the disparity map into zones. We then

compute the average intensity values, or average distance, for each

zone in the disparity map. These intensities are calibrated with the

physical sensors with respect to distance of obstacles. Figure 3.3

shows a sample disparity map with the zone areas noted.

www.manaraa.com

36

Figure 3: Disparity map and zone areas

Fusing both physical and computer vision sensors allow the

collision avoidance system to be much more reliable. Obstacles that

may not be recognized using stereoscopic vision are picked up by the

physical sensors. With the addition of stereoscopic vision, we can use

computer vision to estimate positions of objects in parts of the control

algorithms in the future. We use a simple potential fields method using

the physical distances measured by the infrared proximity sensors.

This provides a vector value that can be used along with our visual

servoing weights computed above.

3.4 Fusing Visual Servoing and Potential Fields

We can fuse the data we receive from our visual servoing and

potential fields systems. We take the attractive force from the visual

www.manaraa.com

37

servoing since this is the direction the system should travel based on

the image data. We take the repulsive force from the potential fields

collision avoidance since this is the direction the system should avoid

due to collision with a detected obstacle.

From the sensor positions shown in Figure 3.1 above, we see

that there are eight zones. For each zone, we combine the attractive

and repulsive forces. We modify wφ from (3.3) so that it is computed

for each zone:

 ⃗⃗ (3.5)

where ⃗⃗ is the repulsive force from the proximity sensor distance for

zone i and
 relates to the attractive force from the visual servoing

system. The value
 is computed for each sensor zone, and then the

control system chooses the
 with the greatest value and moves in

that direction. This system allows the WMRA to detect obstacles using

the proximity sensor array and then navigate around the obstacle to

continue approaching the goal object. If the goal object leaves the

camera frame, then the system halts and the user is prompted to

teleoperate and then reselect the goal object.

3.5 Task Execution

At the beginning of the autonomous ADL task execution, the

user is first presented with a GUI screen where a view of the

www.manaraa.com

38

workspace is displayed through the eye-in-hand monocular camera

mounted on the end effector. The user selects the desired goal object

by clicking on a part of the object on the screen. As described in

Section 3.1, we use the camshift algorithm developed in the OpenCV

open-source computer vision library. Figure 3.4 shows the GUI before

and after selecting the goal object. The user is provided with feedback

by means of the camshift program drawing a red circle around the

tracked object.

Figure 3.4: GUI for approach phase

If at any time the camshift algorithm fails, the entire system

halts and prompts the user to reselect the goal object on the same

GUI. This is important because during rare cases, the camshift

algorithm may return an errant centroid that would cause large

velocities for mobility or manipulation on the WMRA system. Code has

www.manaraa.com

39

been implemented to detect an errant centroid in camshift, and the

user is prompted to reselect the goal object after the system

immediately halts.

Since the weights controlling arm motion are controlled based on

the distance from the camera to the goal object, initially the arm

moves very little and mostly the wheelchair platform moves. The

platform centers in the x-direction as it approaches in the z-direction.

These movements are computed based on (3.1) and (3.3), while arm

motion is computed based on (3.4). When the system has almost

approached the goal object, wheelchair movement is minimized until it

halts while arm motion has increased to full motion. Once the system

reaches a threshold distance from the goal object, the grasping phase

begins as described in Chapter 4.

www.manaraa.com

40

Chapter 4 Grasping

At the end of the approach phase, the WMRA is positioned so

that strictly arm motion can be used to orient and position the

manipulator to grasp the goal object. At this point, the WMRA is close

enough so that the camera can see good detail of the goal object. We

can now use a feature extraction method since we are close enough to

the goal object. As long as we have at least three matched keypoints,

we are able to use a full 3-dimensional visual servoing technique to

position and orient the manipulator. At the end of the grasping phase,

the gripper is positioned so that when the paddles are closed, the goal

object is grasped. The grasped goal object can then be delivered to the

user sitting in the wheelchair by means of pre-programmed position

control where the gripper is positioned so that the user can reach and

take the goal object.

4.1 SIFT Feature Extraction

It should be noted that any feature extraction method can be

used with visual servoing control. However, since the reliability of the

velocity control output by the IBVS system depends on the reliability

www.manaraa.com

41

of the extracted features, a reliable and accurate algorithm should be

used. SIFT (2) was developed by David Lowe by combining several

image processing techniques. The algorithm extracts feature vectors

from the image that are invariant to translation, size, rotation,

illumination, and geometric distortion. A k-d tree algorithm is used to

index these extracted features and to remove false matches. Features

are clustered using Hough transforms, and the clusters are verified

using a linear least squares method. Finally, based on a probabilistic

model outliers can be rejected. Lowe’s SIFT feature extraction and

matching algorithms have proven to be very robust, especially due to

its invariance to image transformations and differences typical in real-

world image processing. The downside to the SIFT algorithm is that

performance is very low due to intensive processing required.

Lowe’s SIFT implementation has been provided to the

community by means of a closed-source binary executable. Rob Hess

provided an open-source implementation of SIFT using the OpenCV

open-source computer vision library in (22). Hess’s open-source

implementation provided the same performance and results of Lowe’s

original closed-source implementation. In our program, we use parts

of Hess’s open-source SIFT implementation.

www.manaraa.com

42

4.2 Image-Based Visual Servoing

Visual servoing relies on sets of features extracted from a goal

image and a scene image and then compares them to compute the

velocities needed to match the scene image with the goal image. The

goal image is a sample image taken from the eye in hand camera

when the end effector has reached its desired position and orientation.

Sample goal and scene images can be viewed in Figure 4.1. Velocities

outputted from the IBVS move the WMRA system until it has reached

the goal orientation. At this point, the gripper paddles can close and

grasp the goal object, and the task is completed.

Figure 4.1: Sample scene (left) and goal (right) image

We desire to have a reliable and accurate method of feature

extraction since the reliability of the visual servoing control relies on

accurate feature extraction. We use the SIFT algorithm as described in

Section 4.1 above. SIFT performance is improved on the WMRA

system by saving the set of features extracted from the goal image so

www.manaraa.com

43

that it is not searched at every iteration. Performance is further

improved by reducing the resolution slightly, and only searching areas

in the scene image that are likely to contain goal image features. For

our code implementation, we use the open source SIFT library

developed by Rob Hess (22).

The goal of visual servoing is to minimize an error computed by:

 (4.1)

where the features extracted in the scene image that match features

from the goal image are represented by s(m(t),a), where m(t) is the

vector of image measurements and a is a set of camera parameters.

In our case, m(t) consists of the image coordinates of the matched

features in the scene image. From this point forward, we can represent

s(m(t),a) simply as s. The vector s* consists of the desired goal image

measurements. In our case, s* contains the image coordinates of the

features in the goal image. Therefore, from (4.1), we see that the

error e(t) is simply the difference between s and s*.

For our application, we desire to design a velocity controller that

can control the WMRA system using this visual servoing in Cartesian

control based on the end effector. The relationship between the time

variation of s and the camera velocity is described by:

 ̇ (4.2)

www.manaraa.com

44

where Ls is the image Jacobian related to s. The term image Jacobian

is used interchangeably with feature Jacobian and interaction matrix.

The vector vc is the velocity controller for the WMRA system, which

consists of vc and ωc, the instantaneous linear velocity and angular

velocity, respectively, in all three dimensions. For visual servo control,

vc=(vx, vy, vz, ωx, ωy, ωz). Using (4.1) and (4.2), we find the

relationship between the time variation of the error and the camera

velocity:

 ̇ (4.3)

where Le=Ls. We wish to solve (4.3) for vc so that we can use it as

velocity input to the WMRA control system. Therefore, we finally find:

 -
 (4.4)

where λ is a gain for the velocity control and the Moore-Penrose

pseudo-inverse of Le is taken to solve for vc.

We now define the image Jacobian to use in (4.4). We must first

relate the 3-dimensional point X=(X,Y,Z) to the 2-dimensional point

x=(x,y):

 (4.5)

where m=(u,v) from (4.1) above is the coordinates in pixels of the

image feature point, and a=(cu,cv) is the set of camera parameters

with the principal point described by cu and cv. The image Jacobian is a

www.manaraa.com

45

6x2k matrix for k matched feature points. The image Jacobian Lx,

related to x from (4.5) is:

 [

] (4.6)

where Z is the estimated distance of the feature point from the camera

frame and x and y are from (4.5). In order to control the WMRA

system using 6-DoF Cartesian control, we must have at least k=3

matched feature points to determine the velocities. We stack the

interaction matrices for k points:

[

]

 (4.7)

Similarly, we also stack the errors such that e from (4.4) is:

[

]

 (4.8)

We have now designed a visual servoing control system based

on (4.4) from (17) and (18) that can output velocity control for the

WMRA so that the system can minimize the error such that a selected

goal object can be approached for execution of ADL tasks. When the

visual error has been minimized and the velocities of the system

www.manaraa.com

46

approach zero, then the robotic arm has reached its desired position

and orientation. At this time, the gripper paddles can be closed to

grasp the goal object and deliver it to the user in the wheelchair.

4.3 Task Execution

We switch from the approach phase to the grasping phase when

a threshold distance on z between the camera frame and goal object is

reached. This switch is immediate and seamless so that the user

sitting in the wheelchair does not experience any disruption in

wheelchair or arm movement. No further input from the user is

required during the grasping phase such that the entire execution of

the ADL task is autonomous from beginning to end. Feedback is given

to the user by means of a GUI based on Hess’s open-source SIFT

implementation (see Figure 4.2).

www.manaraa.com

47

Figure 4.2: GUI for grasping phase

From Figure 4.2, we can see that matched features are

visualized on the left. We run several noise reduction algorithms inside

the SIFT code to reduce the number of false SIFT feature matches.

The screen on the right shows positive matched SIFT features in blue

and rejected false matched SIFT features in red. Once the goal

position and orientation has been reached as determined strictly by

image data, the gripper paddles close to grasp the goal object and it is

delivered to the user sitting in the wheelchair. We will examine data

and results from physical testing of these task executions in Chapter 5

below.

www.manaraa.com

48

Chapter 5 Physical Testing of ADL Tasks

In order to demonstrate the physical results of the 9-DoF

combined visual servoing theory described above, we design an ADL

task that the system can autonomously execute and provide data and

results below. Physical design of the WMRA can be reviewed in Section

2.3 and 2.4 above as well as in (13) in further detail. Figure 5.1 shows

the 9-DoF WMRA platform used for physical testing in this work.

Figure 5.1: The 9-DoF WMRA system used for testing

www.manaraa.com

49

The gripper assembly has been slightly modified in order to

mount an eye-in-hand monocular camera for visual servoing. We use a

standard commercially-available USB webcam for the eye-in-hand

camera, specifically a Logitech C910. For estimating the distance

between the camera frame and the goal object, we use an infrared

proximity sensor. The Sharp GP2Y0A21YK proximity sensor is mounted

directly beneath the camera. Figure 5.2 shows the camera and

proximity sensor mounted beneath the gripper assembly.

Figure 5.2: Camera and proximity sensor on gripper assembly

5.1 Description of ADL Tasks

To demonstrate an application of this 9-DoF visual servoing

combined mobility and manipulation, we design an ADL task that can

be executed autonomously from beginning to end using this system.

www.manaraa.com

50

We use a “go to and pick up” ADL task where the user selects the goal

object on the GUI and the 9-DoF WMRA system approaches and then

grasps the goal object autonomously. For this task, we place a goal

object far away from the WMRA system so that movement of the

mobile platform is necessary to successfully grasp the goal object. This

demonstrates combined mobility and manipulation of our control

system. The WMRA uses the wheelchair and arm to center on the goal

object and approach it. When a threshold distance from the camera

frame to the goal object is reached, the grasping phase then begins

and the manipulator is positioned and oriented to grasp the goal

object. Finally, the gripper paddles close to grasp the goal object and it

is delivered to the user sitting in the wheelchair.

During teleoperation of the WMRA system for this “go to and

pick up” ADL task, the user would first use the joystick to move the

wheelchair close enough such that the goal object is within the

workspace of the robotic arm. The user would then switch to

controlling the arm by means of various user interfaces provided, such

as laptop touch screen control. After the gripper is correctly positioned

and oriented, a command would be sent to close the gripper paddles.

Finally, a command would be sent to move the arm back to a position

in reach of the user for them to retrieve the goal object.

www.manaraa.com

51

During autonomous execution of this “go to and pick up” ADL

task, the only user input would be initially selecting the goal object on

the GUI screen. After the object was selected, the approach phase

would begin where combined mobility and manipulation are used to

move the WMRA close to the goal object while centering with the

wheelchair and arm. When the WMRA is close enough, the grasping

phase will begin and strictly arm motion will position and orient so that

the goal object is within the paddles of the gripper. At this time, the

gripper closes the paddles and delivers the goal object to the user

sitting in the wheelchair so that they can retrieve it.

5.2 Physical Testing Results

We execute the “go to and pick up” task autonomously with

several different objects. Each object is enrolled in the image database

for visual servoing so a positive match exists for the goal image of that

particular object. Sample results from the physical execution of the

approach phase can be seen in Figure 5.3.

www.manaraa.com

52

Figure 5.3: Weights during the approach phase

As we can see, initially very little arm motion is used, where the

arm weight w1=w2=…=w7 is very high. As the system approaches the

goal object and the distance on z is reduced, the resulting arm weight

reduces until it becomes very low and full arm motion is used. Since

initially platform motion should be used mostly, we see that wx is low.

As the distance on z is reduced, wx becomes very large once it

approaches the goal object. In this manner, the wheelchair motion is

reduced until it halts during the switch to the grasping phase.

Rotational movement of the wheelchair is controlled with wφ where the

weight depends on the necessary rotational movement to center the

wheelchair on the goal object during approach.

0

5

10

15

20

25

30

35

W
e
ig

h
ts

Time (x10ms)

Weights During Approach Phase

Wx Wφ W1=W2=...=W7

www.manaraa.com

53

When the system switches to the grasping phase, the weights on

the wheelchair are set to infinity so that no further mobility is used.

Arm weight is minimized so that full manipulation is possible, except

for when joint limits or singularities prevent movement. 3-dimensional

IBVS is now used to position and orient the arm. The velocity output of

the IBVS system can be visualized in Figure 5.4 and Figure 5.5.

Figure 5.4: Translational velocities during the grasping phase

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

2.0

1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0
3

1
0
9

1
1
5

1
2
1

1
2
7

V
e
lo

c
it

y
 (

m
m

/
s
)

Time (s)

Translational Velocities During Grasping Phase

Vx Vy Vz

www.manaraa.com

54

Figure 5.5: Rotational velocities during the grasping phase

As we can see from Figure 5.4 and Figure 5.5, the velocities for

the end effector converge at a minimum at the end of the grasping

phase. Although some noise exists in the IBVS velocity output, the

system stays stabile during testing and is able to grasp the goal object

(see Figure 5.6).

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

1 11 21 31 41 51 61 71 81 91 101 111 121 131

V
e
lo

c
it

y
 (

m
m

/
s
)

Time (s)

Rotational Velocities During Grasping Phase

ωx ωy ωz

www.manaraa.com

55

Figure 5.6: Grasping the goal object

Reliability of the physical system is generally very good, and

typically the control system will end in a successful grasp. After testing

the “go to and pick up” task 30 times with the same initial and goal

positions, the system resulted in successful task execution 83.33% of

the time. During rare cases where the goal object is lost during the

approach phase, the entire system immediately halts and the user is

prompted to reselect the goal object. In some cases when poor image

features exist due to environmental effects such as lighting or

cluttered backgrounds, the system experiences additional noise, but

most of the time once the camera gets close enough to the goal

object, good features can then be extracted and stability increases.

Most failed executions were a result of less than desirable accuracy of

the infrared proximity sensor on the end effector for estimating the

www.manaraa.com

56

distance from the system to the goal object. Use of a more reliable

sensing device would improve reliability of the system. Execution time

for the “go to and pick up” task over 30 trials averaged 2 minutes and

16 seconds with a standard deviation of 47 seconds. Minimum

execution time was 28 seconds and maximum was 3 minutes and 37

seconds. The variation in execution time depended on the amount of

arm movement necessary during the grasping phase. Figure 5.7 shows

the end of the task when the goal object has been delivered to the

user sitting in the wheelchair.

Figure 5.7: WMRA at the end of the ADL task

www.manaraa.com

57

Chapter 6 Discussion and Conclusion

6.1 Discussion

In this work, we have presented a control theory implementing

visual servoing control on a 9-DoF mobile manipulator system for

autonomous execution of ADL tasks. In this work, control of mobility

and manipulation is combined and used simultaneously throughout the

execution of ADL tasks. This provides a streamlined control system

resulting in smooth and seamless physical operation for beginning to

end autonomous execution of ADL tasks. During the final grasping

phase, full 3-dimensional IBVS is used such that objects of virtually

any position and orientation can be grasped.

The advantages to autonomous execution of the demonstrated

“go to and pick up” task are fairly obvious. Teleoperated control of the

9-DoF WMRA system is difficult, even when used by able-bodied users.

When users with reduced upper-body mobility teleoperate the system,

this difficulty is greatly magnified. For extreme cases such as users

that are locked in, the BCI must be used and teleoperation of the

complex WMRA system results in a very great cognitive burden on the

www.manaraa.com

58

user, and execution of the ADL task takes a very long period of time.

By automating control of mobility and manipulation, macro tasks can

be developed so that users only have to select an ADL activity they

wish to execute.

6.2 Conclusion

The advantages to using vision-based control for the physical

implementation of autonomous WMRA control are vast. By using visual

servo control, inaccuracies of the hardware can be overcome. Vision-

based control also does not require that workspaces be as structured

as in position-based control. Visual servoing is also robust against

dynamic obstacles as well as noisy and cluttered environments. The

physical results and high success of grasping for the vision-based

approaches implemented in this work show that it is a very strong

implementation for autonomous execution of ADL tasks.

This work provides a control theory using full 3-dimensional

IBVS implemented on a 9-DoF mobile manipulator. Mobility and

manipulation are controlled in a combined manner such that they are

used simultaneously throughout the control flow. This provides a very

robust system that is streamlined and reliable for autonomous

execution of macro ADL tasks.

www.manaraa.com

59

6.3 Future Work

Although we have successfully executed a very simple “go to and

pick up” task, many other ADL tasks can be executed using the vision-

based control developed in this work for the 9-DoF WMRA system. In

the future, macro tasks such as “go to and open the door” can be

implemented using this work. A BCI interface (see Figure 6.1) is also

being developed so that users can select macro tasks based on object

recognition techniques. This would allow a user to select an area of the

screen, and when the program detects the object they will be

presented with a pool of ADL tasks to choose from.

Figure 6.1: Sample BCI and interface screen

Further research also involves doing human testing with both

teleoperated and autonomous ADL tasks with the WMRA system. The

www.manaraa.com

60

WMRA is unique in that there is always a human user on-board that

the program can leverage knowledge from. Certain tasks are very

difficult for computers to execute, such as object detection. However,

humans can very easily detect objects with much greater accuracy.

Human subject testing can help us to understand which parts of the

ADL task are very difficult to teleoperate and should be automated,

and which parts are very easy to teleoperate and should be done by

the human user.

www.manaraa.com

61

References

1. Bureau, US Census. Disability Among the Working Age Population:

2008 and 2009. s.l. :
http://www.census.gov/prod/2010pubs/acsbr09-12.pdf,

September 2010.

2. Distinctive Image Features from Scale-Invariant Keypoints. Lowe,
David. s.l. : International Journal of Computer Vision 2004.

3. Vision-based control of the Manus using SIFT. Liefhebber, F. and

Sijs, J. s.l. : IEEE 10th International Conference on
Rehabilitation Robotics (ICORR 2007), 2007, pp. 854-861.

4. Eye-in-hand stereo visual servoing of an assistive robot arm in
unstructured environments. Kim, Dae-Jin, Lovelett, Ryan and

Behal, Aman. s.l. : IEEE International Conference on Robotics
and Automation (ICRA 2009), May 2009, pp. 2326-2331.

5. VA/Stanford Rehabilitation Robotics Research and Development

Program: Lessons Learned in the Application of Robotics
Technology to the Field of Rehabilitation. Loos, H.F.M. Van der.

s.l. : IEEE Transactions on Rehabilitation Engineering, March
1995, Vol. 3, pp. 46-55. 1.

6. The Kinematics of a Redundant Mobile Manipulator. C. Ding, P.

Duan, M. Zhang and H. Liu. s.l. : Proceedings of the IEEE
International Conference on Automation and Logistics, 2009.

7. Kinematic Modeling and Redundancy Resolution for Nonholonomic
Mobile Manipulators. A. Luca, G. Oriolo, and P. Giordano.

Orlando, FL : Proceedings of the 2006 IEEE International
Conference on Robotics and Automation, 2006.

www.manaraa.com

62

8. Experimental Evaluation of Dynamic redundancy resolution in a

Nonholonomic wheeled Mobile Manipulator. G.D. White, R.M.
Bhatt, C Pei Tang and V.N. Krovi. s.l. : IEE/ASME Transactions

on Mechatronics, 2009, Vol. 14. 3.

9. The Raptor wheelchair robot system. Mahoney, R. M. Netherlands :
IOS, 2001, Vol. Integration of Assistive Technology in the

Information Age, pp. 135-141.

10. Technical Results from Manus User Trials. H.Eftring, K.Boschian.
s.l. : Proceedings of the 1999 ICORR, 1999. pp. 136-141.

11. Kinova Jaco Arm - Robotnik. Robotnik. [Online]

http://www.robotnik.es/en/products/robotic-arms/kinova-jaco-
arm.

12. Integrating robotic research: a survey of robotic wheelchair
development. Yanco, Holly A. Stanford, California : AAAI Spring

Symposium on Integrating Robotic Research, March 1998.

13. Maximizing Manipulation Capabilities for People with Disabilities
Using a 9-DoF Wheelchair-Mounted Robotic Arm System. Dubey,

R. Alqasemi and R. s.l. : Proceedings of the 2007 IEEE 10th
International Conference on Rehabilitation Robotics (ICORR

2007), 2007.

14. Craig, J. Introduction to Robotics, Mechanics, and Control. s.l. :
Addison-Wesley Publishing, 2003. 0201543613.

15. Yoshikawa, T. Foundations of Robotics: Analysis and Control. s.l. :

MIT Press, 1990. 0262240289.

16. A Weighted Least-Norm Solution Based Scheme for Avoiding Joint

Limits for Redundant Joint Manipulators. Dubey, T. Chan and R.
2, s.l. : IEEE Robotics and Automation Transactions (R&A

Transactions), 1995, Vol. 11, pp. 286-292.

17. Visual servo control. I. Basic approaches. Chaumette, F. and
Hutchinson, S. 4, s.l. : Robotics & Automation Magazine, IEEE,

2006, Vol. 13, pp. 83-90.

www.manaraa.com

63

18. A tutorial on visual servo control. Hutchinson, S., Hager, G.D. and

Corke, P.I. 5, s.l. : Robotics and Automation, IEEE Transactions
on, 1996, Vol. 12, pp. 651-670.

19. Collaborative control of the MANUS manipulator. Driessen, B., et

al., et al. s.l. : 9th International Conference on Rehabilitation
Robotics (ICORR 2005), June 2005, pp. 247-251.

20. A Hybrid Visual Servo Controller for Robust Grasping by Wheeled

Mobile Robots. Wang, Ying, Lang, Haoxiang and de Silva, C.W. 5,
s.l. : IEEE/ASME Transactions on Mechatronics, October 2010,

Vol. 15, pp. 757-769.

21. Computer video face tracking for use in perceptual user interface.
Bradski, G.R. s.l. : Intel Technology Journal, Q2, 1998.

22. An open-source SIFT Library. Hess, Rob. New York, NY :
Proceedings of the international conference on Multimedia (MM

'10), ACM, 2010, pp. 1493-1496.

www.manaraa.com

64

Appendices

www.manaraa.com

65

Appendix A Source Code

Main Application

#include <iostream>

#include <fstream>

#include <Afxwin.h>

#include <stdlib.h>

#include <malloc.h>

#include <memory.h>

#include <tchar.h>

#include "controlMotor.h"

#include "match.h"

#include "wmraLJ.h"

#include "main.h"

#include "camshift.h"

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

#define dacm 15 //speed modifier for when batteries die down

#define pwmStop 130 //idle speed PWM value for wheelchair

#define Tmod 25 //gain to translation velocity control

#define wmod 25 //gain to rotational velocity control

#define tmaxv 10 //maximum translational velocity control

#define wgain 1 //gain for sending the weight to WMRA Opt()

int pwmX = 0, pwmY = 0; //wheelchair platform control

int wmraEnd = 1; //end flag for WMRA control program

extern float v;

extern int choice6; //go back to ready position when 1

extern int c; //flag for ending the camshift thread

extern int cc; //flag for communicating camshift errors

extern int track_object; //camshift, =0 no object tracked, =1 object

tracked

CvCapture *capture = 0; //pointer to camera object

double centroidX = 0, centroidY = 0; //coordinates of center (2D)

double wmraCtrl[10] = {0, 0, 0, 0, 0, 0, 0, 1, 135, 135};

double armWeight = 1; //weight for the arm during approach

/*wmraCtrl[0] -> ARM forward (1)/backward(-1) Tz

wmraCtrl[1] -> ARM left(1)/right(-1) Tx

wmraCtrl[2] -> ARM up(1)/down(-1) Ty

wmraCtrl[3] -> ARM yaw (.003/-.003) wz

wmraCtrl[4] -> ARM roll (.003/-.003) wx

wmraCtrl[5] -> ARM pitch (.003/-.003) wy

wmraCtrl[6] -> ARM gripper open(-1)/close(1)

To STOP arm and stay idle, set wmraCtrl[0...6]=0

wmraCtrl[7] -> WMRA program exit(0)/run(1)

wmraCtrl[8] -> PLATFORM forward(idle++)/backward(idle--) (PWM, 55-215)

 135 idle, 135-165 forward, 105-135 backward

wmraCtrl[9] -> PLATFORM right(idle++)/left(idle--) (PWM, 55-215)

 135 idle, 135-165 right, 105-135 left

To STOP platform and stay idle, wmraCtrl[8]=wmraCtrl[9]=135

*/

www.manaraa.com

66

Appendix A (Continued)

char *tempChar; //temporary char pointer passed to thread

using namespace std;

UINT camshiftThread (LPVOID pParam)

{

 //thread for camshift process

 if (camshift()) //calls the camshift object tracking program

 {

 cerr << "There was a problem starting the camshift thread!" <<

endl;

 return 1;

 }

 return 0;

}

UINT wmraThread (LPVOID pParam)

{

 //thread for moving WMRA

 wmraEnd = wmraControl(); //calls main WMRA program

 //AfxEndThread(0);

 return 0;

}

int main ()

{

 double prat[5] = {5,5,5,5,5};

 int xWeight=0, yWeight=0, xWeightI=0, count=0, flag=0, j=0;

 int nxWeight=0, nyWeight=0, nv=0;

 int numFeatures=0; //number of matched features

 double Z=2.5; //distance from camera frame to goal object

 double wphi=0, dacx=0;

 double Tx=0, Ty=0, Tz=0, wx=0, wy=0, wz=0; //velocity controls from

visual servoing system

 IplImage *frame; //scene image

 IplImage *templ = cvLoadImage ("crush.jpg", 1); //template image from

file

 int n1=0;

 double *px; //x-coordinates of the goal image

 double *py; //y-coordinates of the goal image

 double *nx; //x-coordinates of the scene image

 double *ny; //y-coordinates of the scene image

 double *xd; //differences in x-direction (for e)

 double *yd; //differences in y-direction (for e)

 double *xx; //differences in x-direction (for x in Lx)

 double *yy; //differences in y-direction (for y in Lx)

 int *nf; //pointer to convert number of matched features

 struct feature* feat1;

 double *stats;

double **viserv;

 stats = (double *) malloc (3 * sizeof (double));

 stats[0] = 0;

 stats[1] = 0;

www.manaraa.com

67

Appendix A (Continued)

stats[2] = 0;

 clock_t start, end;

 //<------------------------ START CAMSHIFT ------------------------>

 cout << "Please select an object to track by left-clicking on a part

of the object in the video feed..." << endl;

 AfxBeginThread (camshiftThread, tempChar);

 //<------------------------ START LAB JACK ------------------------>

 cout << "Initializing platform..." << endl;

 if (Initialize())

 {

 cerr << "There was an error initializing the Lab Jack!" << endl;

 return 1;

 }

 //set wheelchair to idle pwm initially

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 //<------------------------ START WMRA CODE ------------------------>

 cout << "Initializing WMRA..." << endl;

 AfxBeginThread (wmraThread, tempChar);

 cout << "WMRA initialized..." << endl;

 v = 25; //set initial WMRA arm speed

 cout << "Platform initialized and idle motion set, is is now safe to

turn on joystick..." << endl;

 cout << "Joystick must be turned on within 10 seconds or before an

object is selected, whichever is longer..." << endl;

 Sleep(10000); //wait for everything to get settled, then start visual

servoing

 //check to see if object has been selected by user

 if (track_object == 0)

 {

 while (!track_object)

 {

 }

 }

 Sleep(1000);

 //set up file for printing out weights

 fstream weights("weights.csv", ios::out);

 weights << "wx,wphi,warm" << endl; //print header

 cout << "Object has been selected and is now being tracked..." <<

endl;

 start = clock ();

www.manaraa.com

68

Appendix A (Continued)

 //<------------------------ APPROACH OBJECT ------------------------>

 //control loop for initial visual servoing (approach object)

 //set initial xweight

 xWeightI = abs (320-centroidX);

 //move platform forward

 wmraCtrl[8] = pwmStop + 10;

 if (GetAIN(4, Z)) //read I1 proximity sensor

 {

 cerr << "There was a problem reading I1 proximity sensor!" << endl;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 return 1;

 }

 Z=0.5/Z;

 armWeight = Z * wgain; //update the weights W for arm motion in Opt()

 if (Z < 1)

 {

 dacx = Z;

 }

 else

 {

 dacx = 1;

 }

 while (Z > 0.3) //while distance threshold not reached

 {

 //compute velocity based on errors (distance from image center)

 xWeight = abs (320-centroidX);

 nxWeight = 320-centroidX;

 yWeight = abs (240-centroidY);

 nyWeight = 240-centroidY;

 if (Z < 0.7)

 {

 v = (max(xWeight, yWeight))/5; //pick max/1.5 for velocity of

arm

 }

 else

 {

 v = (max(xWeight, yWeight))/1.5; //pick max/1.5 for velocity of

arm

 }

 if (xWeight > yWeight)

 {

 nv = nxWeight / 1.5;

 }

 else

 {

 nv = nyWeight / 1.5;

 }

www.manaraa.com

69

Appendix A (Continued)

 //computing phi-weight for rotation of wheelchair

 //if ((xWeight < 13) || (flag == 1))

 if (xWeight < 13)

 {

 wphi = 1;

 flag = 1;

 }

 else

 {

 wphi = 0.000125 * ((((xWeightI-xWeight)*(xWeightI-

xWeight))*((xWeight+xWeightI)*(xWeight+xWeightI))) /

((xWeightI*xWeightI)*xWeight));

 }

 weights << dacm*dacx << ",";

 weights << wphi << ",";

 //if target has been lost, or is too small, then pause WMRA and

prompt user to re-select target

 if (cc < 0)

 {

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 wmraCtrl[0] = 0;

 wmraCtrl[1] = 0;

 wmraCtrl[2] = 0;

 wmraCtrl[3] = 0;

 wmraCtrl[4] = 0;

 wmraCtrl[5] = 0;

 track_object = 0;

 cout << "TARGET LOST, PLEASE RE-SELECT TARGET ON GUI!" << endl;

 while (!track_object)

 {

 //do foo

 }

 Sleep (1000);

 }

 if ((dacm*dacx)<10)

 {

 wmraCtrl[8] = pwmStop + 10;

 }

 else

 {

 wmraCtrl[8] = pwmStop + (dacm * dacx); //move forward

 }

 if (count < 1000) //move arm forward for a bit

 {

www.manaraa.com

70

Appendix A (Continued)

 wmraCtrl[0] = 1;

 }

 else //stop moving arm forward

 {

 wmraCtrl[0] = 0;

 }

 //modifying wheelchair movements for w-phi

 //if (centroidX<240)

 if (centroidX<270)

 {

 //move platform left

 wmraCtrl[9] = pwmStop - (((1-wphi)*dacm)*dacx);

 }

 //else if (centroidX>400)

 else if (centroidX>370)

 {

 //move platform right

 wmraCtrl[9] = pwmStop + (((1-wphi)*dacm)*dacx);

 }

 else //centered in x-direction

 {

 //arm idle in x-direction

 //wmraCtrl[9] = (1-wphi) = 0

 wmraCtrl[9] = pwmStop;

 }

 if (centroidX<300)

 {

 //move arm left

 wmraCtrl[1] = 1;

 }

 else if (centroidX>340)

 {

 //move arm right

 wmraCtrl[1] = -1;

 }

 else //centered in x-direction

 {

 //arm idle in x-direction

 wmraCtrl[1] = 0;

 }

 if (centroidY<220)

 {

 //move arm up

 wmraCtrl[2] = 1;

 }

 else if (centroidY>260)

 {

 //move arm down

 wmraCtrl[2] = -1;

 }

 else //centered in y-direction

www.manaraa.com

71

Appendix A (Continued)

 {

 //arm idle in y-direction

 wmraCtrl[2] = 0;

 }

 if (GetAIN(4, Z)) //read I1 proximity sensor

 {

 cerr << "There was a problem reading I1 proximity sensor!" <<

endl;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 return 1;

 }

 Z=0.5/Z;

 armWeight = Z * wgain; //update the weights W for arm motion in

Opt()

 weights << armWeight << endl; //print the arm weights

 if (Z < 1)

 {

 dacx = Z;

 }

 else

 {

 dacx = 1;

 }

 count++; //increment count for arm movement forward

 }

 v = 1;

 armWeight = 0;

 //set all motions back to idle

 wmraCtrl[0] = 0;

 wmraCtrl[1] = 0;

 wmraCtrl[2] = 0;

 wmraCtrl[3] = 0;

 wmraCtrl[4] = 0;

 wmraCtrl[5] = 0;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 c = 27; //end camshift thread

 cout << "System has now approached object." << endl;

 cout << "Please wait, re-initializing camera..." << endl;

 Sleep (2000);

 capture = cvCaptureFromCAM(0); //only 1 camera used, we pass 0

 if (!capture)

 {

 cerr << "There was an error opening camera. Program will

terminate!" << endl;

 return 1;

www.manaraa.com

72

Appendix A (Continued)

 }

 cout << "Starting SIFT IBVS..." << endl;

 //set up file for printing the velocity control

 fstream velocity ("velocities.csv", ios::out);

 velocity << "Tx,Ty,Tz,wx,wy,wz" << endl; //print header

 //<------------------------ GRASP OBJECT ------------------------>

 //control loop for initial visual servoing (approach object)

 if (GetAIN(4, Z)) //read I1 proximity sensor

 {

 cerr << "There was a problem reading I1 proximity sensor!" << endl;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 return 1;

 }

 Z=1/Z;

 flag = 0;

 //while (!flag) //while distance threshold not reached

 while (Z > 0.41)

 {

 if (!templ)

 {

 cerr << "There was an error getting the template image!" <<

endl;

 return 1;

 }

 frame = cvRetrieveFrame (capture);

 if (!frame)

 {

 cerr << "There was an error getting the frame image!" << endl;

 return 1;

 }

 IplImage *framelow = cvCreateImage (cvSize (320, 240), frame-

>depth, frame->nChannels);

 //convert frame to 320x240

 cvResize (frame, framelow, 1);

 //stats = siftMatch (templ, framelow, &feat1, &n1);

 viserv = siftMatch (templ, framelow, &feat1, &n1);

 //grab all the data from viserv for local access here

 px = viserv[0];

 py = viserv[1];

 nx = viserv[2];

 ny = viserv[3];

 xd = viserv[4];

www.manaraa.com

73

Appendix A (Continued)

 yd = viserv[5];

 xx = viserv[6];

 yy = viserv[7];

 nf = (int *) viserv[8]; //cast double* to int*

 //save number of matched features as int

 numFeatures = *nf;

 cout << "number matched features: " << numFeatures << endl;

 if (numFeatures > 2)

 {

 CvMat *vc = cvCreateMat (6, 1, CV_32FC1); //velocity control

 CvMat *Le = cvCreateMat (numFeatures*2, 6, CV_32FC1); //image

Jacobian

 CvMat *pLe = cvCreateMat (6, numFeatures*2, CV_32FC1); //pseudo-

inverse of image Jacobian

 CvMat *e = cvCreateMat (numFeatures*2, 1, CV_32FC1); //error

matrix

 j = 0; //j is additional counter for traversing pointers

 for (int i=0; i<2*numFeatures; i+=2)

 {

 //set e: error matrix (2*nf,1)

 cvmSet (e, i, 0, xd[j]);

 cvmSet (e, i+1, 0, yd[j]);

 //set Le: image Jacobian (2*nf,6)

 cvmSet (Le, i, 0, -1/Z);

 cvmSet (Le, i, 1, 0);

 cvmSet (Le, i, 2, xx[j]/Z);

 cvmSet (Le, i, 3, xx[j]*yy[j]);

 cvmSet (Le, i, 4, -(1+xx[j]*xx[j]));

 cvmSet (Le, i, 5, yy[j]);

 cvmSet (Le, i+1, 0, 0);

 cvmSet (Le, i+1, 1, -1/Z);

 cvmSet (Le, i+1, 2, yy[j]/Z);

 cvmSet (Le, i+1, 3, 1+yy[j]*yy[j]);

 cvmSet (Le, i+1, 4, -xx[j]*yy[j]);

 cvmSet (Le, i+1, 5, -xx[j]);

 j++; //increment j

 }

 //compute pseudo-inverse of Le

 cvInvert (Le, pLe, CV_SVD);

 //compute vc=pLe*e

 cvMatMul (pLe, e, vc);

 //get the velocity controller data

 Tx = cvmGet (vc, 0, 0);

 Ty = cvmGet (vc, 1, 0);

 Tz = cvmGet (vc, 2, 0);

www.manaraa.com

74

Appendix A (Continued)

 wx = cvmGet (vc, 3, 0);

 wy = cvmGet (vc, 4, 0);

 wz = cvmGet (vc, 5, 0);

 }

 else //not enough features matched, set to idle motion

 {

 Tx = 0;

 Ty = 0;

 Tz = 0;

 wx = 0;

 wy = 0;

 wz = 0;

 }

 //modify velocity control using gains

 Tx = -Tx/Tmod;

 Ty = -Ty/Tmod;

 Tz = Tz;

 wx = -wx/wmod;

 wy = -wy/wmod;

 wz = wz/wmod;

 //check to see if translational velocity exceeds maximum

 if (abs(Tx) > tmaxv)

 {

 if (Tx < 0)

 {

 Tx = -tmaxv;

 }

 else

 {

 Tx = tmaxv;

 }

 }

 if (abs(Ty) > tmaxv)

 {

 if (Ty < 0)

 {

 Ty = -tmaxv;

 }

 else

 {

 Ty = tmaxv;

 }

 }

 if (abs(Tz) > tmaxv/2)

 {

 if (Tz < 0)

 {

 Tz = -tmaxv/2;

 }

 else

 {

 Tz = tmaxv/2;

www.manaraa.com

75

Appendix A (Continued)

 }

 }

 cout << "Tx: " << Tx << endl;

 cout << "Ty: " << Ty << endl;

 cout << "Tz: " << Tz << endl;

 cout << "wx: " << wx << endl;

 cout << "wy: " << wy << endl;

 cout << "wz: " << wz << endl;

 velocity << Tx << ",";

 velocity << Ty << ",";

 velocity << Tz << ",";

 velocity << wx << ",";

 velocity << wy << ",";

 velocity << wz << endl;

 //set motion for Tx

 wmraCtrl[1] = Tx;

 //set motion for Ty

 wmraCtrl[2] = Ty;

 //set motion for Tz

 wmraCtrl[0] = Tz;

 //set motion for wx

 wmraCtrl[4] = wx;

 //set motion for wy

 wmraCtrl[5] = wy;

 //set motion for wz

 wmraCtrl[3] = wz;

 //update previous ratios

 prat[0] = prat[1];

 prat[1] = prat[2];

 prat[2] = prat[3];

 prat[3] = prat[4];

 prat[4] = Tz;

 if ((abs(prat[0]) < .05) && (abs(prat[1]) < .05) && (abs(prat[2]) <

.05) && (abs(prat[3]) < .05) && (abs(prat[4]) < .05))

 {

 cout << prat[0] << " " << prat[1] << " " << prat[2] << " " <<

prat[3] << " " << prat[4] << endl;

 flag = 1;

 }

 if (GetAIN(4, Z)) //read I1 proximity sensor

 {

 cerr << "There was a problem reading I1 proximity sensor!" <<

endl;

www.manaraa.com

76

Appendix A (Continued)

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 return 1;

 }

 Z=1/Z;

 cvReleaseImage (&framelow);

 }

 weights.close();

 velocity.close();

 v = 5;

 //set all motions back to idle

 wmraCtrl[0] = 1;

 wmraCtrl[1] = 0;

 wmraCtrl[2] = 0;

 wmraCtrl[3] = 0;

 wmraCtrl[4] = 0;

 wmraCtrl[5] = 0;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 //reach forward some to ensure grasp

 Sleep (7000);

 end = clock ();

 cout << "Execution time is " << end - start << endl;

 //set all motions back to idle

 wmraCtrl[0] = 0;

 wmraCtrl[1] = 0;

 wmraCtrl[2] = 0;

 wmraCtrl[3] = 0;

 wmraCtrl[4] = 0;

 wmraCtrl[5] = 0;

 wmraCtrl[8] = pwmStop;

 wmraCtrl[9] = pwmStop;

 cout << endl << endl << "WARNING: JOYSTICK SHOULD BE TURNED OFF NOW!"

<< endl << endl;

 //close the gripper

 //wmraCtrl[6] = 1;

 //Sleep(8000); //close for 7 seconds

 //wmraCtrl[6] = 0;

 wmraCtrl[7] = 0; //stop WMRA arm motion

 //Sleep(5000);

 //choice6 = 1; //go back to ready position

www.manaraa.com

77

Appendix A (Continued)

 while (wmraEnd != 0) //wait for wmra thread to finish

 {

 //loop until WMRA thread is finished

 }

 cvReleaseCapture(&capture); //safely release OpenCV webcam feed

 return 0;

}

www.manaraa.com

78

Appendix A (Continued)

Camshift Tracking for Approach Phase Based on (21)

/* This file is based on the camshift demo program bundled with

the OpenCV 2.0 library and is based on the work in [21] */

#include <stdio.h>

#include <ctype.h>

#include <iostream>

#include <string>

#include "camshift.h"

#include "cv.h"

#include "highgui.h"

extern CvCapture *capture; //pointer to camera object

extern double centroidX, centroidY;

IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0,

*histimg = 0;

CvHistogram *hist = 0;

int select_object = 0;

int track_object = 0;

int show_hist = 1;

int c = 0;

int cc = 0;

CvPoint origin;

CvRect selection;

CvRect track_window;

CvBox2D track_box;

CvConnectedComp track_comp;

int hdims = 16;

float hranges_arr[] = {0,180};

float* hranges = hranges_arr;

int vmin = 10, vmax = 256, smin = 30;

using namespace std;

void on_mouse (int event, int x, int y, int flags, void* param)

{

 if(!image)

 return;

 if(image->origin)

 y = image->height - y;

 if(select_object)

 {

 selection.width = 5;

 selection.height = 5;

 select_object = 0;

 track_object = -1;

 }

 switch(event)

 {

 case CV_EVENT_LBUTTONDOWN:

www.manaraa.com

79

Appendix A (Continued)

 origin = cvPoint(x,y);

 selection = cvRect(x,y,0,0);

 select_object = 1;

 break;

 }

}

CvScalar hsv2rgb (float hue)

{

 int rgb[3], p, sector;

 static const int sector_data[][3]=

 {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};

 hue *= 0.033333333333333333333333333333333f;

 sector = cvFloor(hue);

 p = cvRound(255*(hue - sector));

 p ^= sector & 1 ? 255 : 0;

 rgb[sector_data[sector][0]] = 255;

 rgb[sector_data[sector][1]] = 0;

 rgb[sector_data[sector][2]] = p;

 return cvScalar(rgb[2], rgb[1], rgb[0],0);

}

//==

// camshift() is called by the main application. This

// function initializes the camera and displays a video

// feed. The user selects an object in the video display by

// left-clicking and holding down while selecting the

// object. The function then loops while updating the (x,y)

// coordinates of the center. The coordinates (0,0) are

// sent until the user selects an object in the window.

// This information is used for the visual servoing in the

// main application. Returns 1 for error condition.

//==

int camshift ()

{

 double differenceX=0, differenceY=0, prevX=0, prevY=0;

 cout << "Please wait, initializing camera..." << endl;

 capture = cvCaptureFromCAM(0);

 if(!capture)

 {

 cerr << "Could not initialize capturing..." << endl;

 return 1;

 }

 cvNamedWindow("CamShiftDemo", 1);

 cvSetMouseCallback("CamShiftDemo", on_mouse, 0);

 for(;;)

 {

www.manaraa.com

80

Appendix A (Continued)

 IplImage* frame = 0;

 int i, bin_w;

 frame = cvQueryFrame(capture);

 if(!frame)

 break;

 if(!image)

 {

 /* allocate all the buffers */

 image = cvCreateImage(cvGetSize(frame), 8, 3);

 image->origin = frame->origin;

 hsv = cvCreateImage(cvGetSize(frame), 8, 3);

 hue = cvCreateImage(cvGetSize(frame), 8, 1);

 mask = cvCreateImage(cvGetSize(frame), 8, 1);

 backproject = cvCreateImage(cvGetSize(frame), 8, 1);

 hist = cvCreateHist(1,&hdims,CV_HIST_ARRAY,&hranges,1);

 histimg = cvCreateImage(cvSize(320,200), 8, 3);

 cvZero(histimg);

 }

 cvCopy(frame, image, 0);

 cvCvtColor(image, hsv, CV_BGR2HSV);

 if(track_object)

 {

 int _vmin = vmin, _vmax = vmax;

 cvInRangeS(hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),

 cvScalar(180,256,MAX(_vmin,_vmax),0), mask);

 cvSplit(hsv, hue, 0, 0, 0);

 if(track_object < 0)

 {

 float max_val = 0.f;

 cvSetImageROI(hue, selection);

 cvSetImageROI(mask, selection);

 cvCalcHist(&hue, hist, 0, mask);

 cvGetMinMaxHistValue(hist, 0, &max_val, 0, 0);

 cvConvertScale(hist->bins, hist->bins, max_val ?

255. / max_val : 0., 0);

 cvResetImageROI(hue);

 cvResetImageROI(mask);

 track_window = selection;

 track_object = 1;

 cvZero(histimg);

 bin_w = histimg->width / hdims;

 for(i = 0; i < hdims; i++)

 {

 int val = cvRound(cvGetReal1D(hist-

>bins,i)*histimg->height/255);

 CvScalar color = hsv2rgb(i*180.f/hdims);

www.manaraa.com

81

Appendix A (Continued)

 cvRectangle(histimg, cvPoint(i*bin_w,histimg-

>height),

 cvPoint((i+1)*bin_w,histimg->height

- val),

 color, -1, 8, 0);

 }

 }

 cvCalcBackProject(&hue, backproject, hist);

 cvAnd(backproject, mask, backproject, 0);

 cvCamShift(backproject, track_window,

 cvTermCriteria(CV_TERMCRIT_EPS |

CV_TERMCRIT_ITER, 10, 1),

 &track_comp, &track_box);

 track_window = track_comp.rect;

 if(!image->origin)

 track_box.angle = -track_box.angle;

 cvEllipseBox(image, track_box, CV_RGB(255,0,0), 3,

CV_AA, 0);

 }

 if(select_object && selection.width > 0 && selection.height

> 0)

 {

 cvSetImageROI(image, selection);

 cvXorS(image, cvScalarAll(255), image, 0);

 cvResetImageROI(image);

 }

 cvShowImage("CamShiftDemo", image);

 //Save the previous centroid to compute the difference

 prevX = centroidX;

 prevY = centroidY;

 //save center coordinates to global variable

 centroidX = track_box.center.x;

 centroidY = track_box.center.y;

 //compute the difference between previous and current centroid

 differenceX = abs (prevX - centroidX);

 differenceY = abs (prevY - centroidY);

 //if difference is too great, then send error values

 if (differenceX > 20 || differenceY > 20)

 {

 cc = -5;

 }

 else

 {

 cc = 0;

 }

 cvWaitKey (10);

www.manaraa.com

82

Appendix A (Continued)

 if (c == 27)

 {

 break;

 }

 }

 cvReleaseCapture(&capture);

 cvDestroyWindow("CamShiftDemo");

 return 0;

}

www.manaraa.com

83

Appendix A (Continued)

SIFT Tracking for Grasping Phase Based on (22)

/*

Detects SIFT features in two images and finds matches between them.

Copyright (C) 2006-2010 Rob Hess <hess@eecs.oregonstate.edu>

@version 1.1.2-20100521

*/

#include "match.h"

#include "sift.h"

#include "imgfeatures.h"

#include "kdtree.h"

#include "utils.h"

#include "xform.h"

#include <cv.h>

#include <cxcore.h>

#include <highgui.h>

#include <stdio.h>

#include <math.h>

/* the maximum number of keypoint NN candidates to check during BBF

search */

#define KDTREE_BBF_MAX_NN_CHKS 200

/* threshold on squared ratio of distances between NN and 2nd NN */

#define NN_SQ_DIST_RATIO_THR 0.49

/******************************** Globals

************************************/

//char img1_file[] = "glass.pgm";

//char img2_file[] = "scene1.pgm";

//extern double xdiff, ydiff, ratio;

/********************************** Main

*************************************/

double ** siftMatch(IplImage* img1, IplImage* img2, struct feature**

ffeat1, int *pn1)

{

 struct feature* feat1 = *ffeat1;

 int n1 = *pn1;

 IplImage* stacked = stack_imgs(img1, img2);

 struct feature * feat2, * feat;

 struct feature** nbrs;

 struct kd_node* kd_root;

 CvPoint pt1, pt2;

 double d0, d1;

 int n2, k, i, j, l, adjnf=0, m = 0, mm=0;

www.manaraa.com

84

Appendix A (Continued)

 int nminx=1280, nnminx=1280, nminy=1280, nnminy=1280, nmaxx=0,

nmaxy=0, cenx, ceny;

 int flag=0;

 double xtot=0, ytot=0, xtota=0, ytota=0;

 double *px; //x-coordinates of the goal image

 double *py; //y-coordinates of the goal image

 double *nx; //x-coordinates of the scene image

 double *ny; //y-coordinates of the scene image

 double *apx; //adjusted x-coordinates of the goal image

 double *apy; //adjusted y-coordinates of the goal image

 double *anx; //adjusted x-coordinates of the scene image

 double *any; //adjusted y-coordinates of the scene image

 double *xd; //differences in x-direction (for e)

 double *yd; //differences in y-direction (for e)

 double *xx; //differences in x-direction (for x in Lx)

 double *yy; //differences in y-direction (for y in Lx)

 int *nf; //number of matched features

 double **viserv; //pointer to the pointers for visual servoing data

 double mincx=1280;

 double mincy=1280;

 int jxy;

 if (!n1)

 {

 n1 = sift_features(img1, &feat1);

 }

 n2 = sift_features(img2, &feat2);

 kd_root = kdtree_build(feat2, n2);

 px = (double *) malloc (n1 * sizeof (double));

 py = (double *) malloc (n1 * sizeof (double));

 nx = (double *) malloc (n1 * sizeof (double));

 ny = (double *) malloc (n1 * sizeof (double));

 nf = (int *) malloc (sizeof (int));

 viserv = (double **)malloc((8 * n1 * sizeof (double))+sizeof (int));

 for(i = 0; i < n1; i++)

 {

 feat = feat1 + i;

 k = kdtree_bbf_knn(kd_root,feat,2,&nbrs,KDTREE_BBF_MAX_NN_CHKS);

 if(k == 2)

 {

 d0 = descr_dist_sq(feat, nbrs[0]);

 d1 = descr_dist_sq(feat, nbrs[1]);

 if(d0 < d1 * NN_SQ_DIST_RATIO_THR)

 {

 pt1 = cvPoint(cvRound(feat->x), cvRound(feat->y));

 pt2 = cvPoint(cvRound(nbrs[0]->x), cvRound(nbrs[0]->y));

 //Find min and max values of matched features in the scene

image

 if (nbrs[0]->x < nminx)

 {

 nminx = cvRound(nbrs[0]->x);

www.manaraa.com

85

Appendix A (Continued)

 }

 if (nbrs[0]->x > nmaxx)

 {

 nmaxx = cvRound(nbrs[0]->x);

 }

 if (nbrs[0]->y < nminy)

 {

 nminy = cvRound(nbrs[0]->y);

 }

 if (nbrs[0]->y > nmaxy)

 {

 nmaxy = cvRound(nbrs[0]->y);

 }

 pt2.y += img1->height;

 cvLine(stacked, pt1, pt2, CV_RGB(255,0,255), 1, 8, 0);

 //save x- and y-coordinates for goal image

 px[m] = feat->x;

 py[m] = feat->y;

 //save x- and y-coordinates for scene image

 nx[m] = nbrs[0]->x;

 ny[m] = nbrs[0]->y;

 //compute x- and y-differences and update running total for

average

 xtot = xtot + (feat->x - nbrs[0]->x);

 ytot = ytot + (feat->y - nbrs[0]->y);

 cvCircle(img2, cvPoint(cvRound(nbrs[0]->x),cvRound(nbrs[0]-

>y)), 1, CV_RGB(255,0,0), 2, 8, 0);

 m++;

 feat1[i].fwd_match = nbrs[0];

 }

 }

 free(nbrs);

 }

 if (m > 0) //if there are some features, then process them and remove

outliers

 {

 //malloc for adjusted x,y data based on number of matched features

 xd = (double *) malloc (m * sizeof (double));

 yd = (double *) malloc (m * sizeof (double));

 xx = (double *) malloc (m * sizeof (double));

 yy = (double *) malloc (m * sizeof (double));

 apx = (double *) malloc (m * sizeof (double));

 apy = (double *) malloc (m * sizeof (double));

 anx = (double *) malloc (m * sizeof (double));

 any = (double *) malloc (m * sizeof (double));

 //compute the centroid of the scene image features

 cenx = ((nmaxx - nminx) / 2) + nminx;

 ceny = ((nmaxy - nminy) / 2) + nminy;

www.manaraa.com

86

Appendix A (Continued)

 cvCircle(img2, cvPoint(cenx,ceny), 1, CV_RGB(0,255,0), 2, 8, 0);

 //loop through to find feature point closest to centroid

 for (j=0; j<m; j++)

 {

 if ((abs(nx[j]-cenx) < mincx) && (abs(ny[j]-ceny) < mincy))

 {

 mincx = abs(nx[j]-cenx);

 mincy = abs(ny[j]-ceny);

 jxy = j;

 }

 }

 //save closest feature point to adjusted points

 apx[adjnf] = px[jxy];

 apy[adjnf] = py[jxy];

 anx[adjnf] = nx[jxy];

 any[adjnf] = ny[jxy];

 xd[adjnf] = px[jxy]-nx[jxy];

 yd[adjnf] = py[jxy]-ny[jxy];

 xx[adjnf] = nx[jxy]-160;

 yy[adjnf] = ny[jxy]-120;

 adjnf++;

 //loop through to get rid of outliers

 for (j=0; j<m; j++)

 {

 for (l=0; l<adjnf; l++)

 {

 if ((nx[j] < anx[l]+20 && nx[j] > anx[l]-20) && (ny[j] <

any[l]+20 && ny[j] > any[l]-20))

 {

 cvCircle (img2, cvPoint (cvRound (nx[j]), cvRound (ny[j])),

1, CV_RGB(0,0,255), 2, 8, 0);

 apx[adjnf] = px[j];

 apy[adjnf] = py[j];

 anx[adjnf] = nx[j];

 any[adjnf] = ny[j];

 xd[adjnf] = px[j]-nx[j];

 yd[adjnf] = py[j]-ny[j];

 xx[adjnf] = nx[j]-160;

 yy[adjnf] = ny[j]-120;

 adjnf++;

 break;

 }

 }

 }

 //adjnf is now the adjusted number of features, apx/y and anx/y

contain adjusted matched features

 nf[0] = adjnf; //save number of matched features

 //save pointers into viserv to return to application

 viserv[0] = apx;

 viserv[1] = apy;

www.manaraa.com

87

Appendix A (Continued)

 viserv[2] = anx;

 viserv[3] = any;

 viserv[4] = xd;

 viserv[5] = yd;

 viserv[6] = xx;

 viserv[7] = yy;

 viserv[8] = nf;

 }

 else //give dummy pointer data

 {

 //malloc for adjusted x,y data based on number of matched features

 xd = (double *) malloc (sizeof (double));

 yd = (double *) malloc (sizeof (double));

 xx = (double *) malloc (sizeof (double));

 yy = (double *) malloc (sizeof (double));

 apx = (double *) malloc (sizeof (double));

 apy = (double *) malloc (sizeof (double));

 anx = (double *) malloc (sizeof (double));

 any = (double *) malloc (sizeof (double));

 //give it dummy data

 xd[0] = 0;

 yd[0] = 0;

 xx[0] = 0;

 yy[0] = 0;

 apx[0] = 0;

 apy[0] = 0;

 anx[0] = 0;

 any[0] = 0;

 adjnf = 1;

 nf[0] = adjnf; //save number of matched features

 //save pointers into viserv to return to application

 viserv[0] = apx;

 viserv[1] = apy;

 viserv[2] = anx;

 viserv[3] = any;

 viserv[4] = xd;

 viserv[5] = yd;

 viserv[6] = xx;

 viserv[7] = yy;

 viserv[8] = nf;

 }

 cvNamedWindow("Scene", 1);

 cvShowImage("Scene", img2);

 cvNamedWindow("Matches", 1);

 cvShowImage("Matches", stacked);

 flag = cvWaitKey(1);

 cvWaitKey(1);

www.manaraa.com

88

Appendix A (Continued)

 cvReleaseImage(&stacked);

 kdtree_release(kd_root);

 free(feat2);

 *pn1 = n1;

 *ffeat1 = feat1;

 return viserv;

}

www.manaraa.com

About the Author

William Pence graduated from Land O’ Lakes high school in 2005

and graduated from the University of South Florida in the Fall of 2011

with his Bachelors and Masters in computer engineering. As a research

assistant beginning in 2009, he worked with the Center for Assistive,

Rehabilitation and Robotics Technologies (CARRT) at the University of

South Florida. There, he worked with the WMRA project on many

programming and electrical aspects of the project. He currently lives in

Tampa, FL and his interests include hunting, fishing, sailing, restoring

vintage Jeeps, and robotics. His desire is to work in industry in the

fields of robotics and computer engineering.

