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Abstract  

 

The wheelchair-mounted robotic arm (WMRA) is a 9-degree of 

freedom (DoF) assistive system that consists of a 2-DoF modified 

commercial power wheelchair and a custom 7-DoF robotic arm. 

Kinematics and control methodology for the 9-DoF system that 

combine mobility and manipulation have been previously developed 

and implemented. This combined control allows the wheelchair and 

robotic arm to follow a single trajectory based on weighted 

optimizations. However, for the execution of activities of daily living 

(ADL) in the real-world environment, modified control techniques have 

been implemented.  

In order to execute macro ADL tasks, such as a “go to and pick 

up” task, this work has implemented several control algorithms on the 

WMRA system. Visual servoing based on template matching and 

feature extraction allows the mobile platform to approach the desired 

goal object. Feature extraction based on scale-invariant feature 

transform (SIFT) gives the system object detection capabilities to 

recommend actions to the user and to orient the arm to grasp the goal 
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object using visual servoing. Finally, a collision avoidance system is 

implemented to detect and avoid obstacles when the wheelchair 

platform is moving towards the goal object. These implementations 

allow the WMRA system to operate autonomously from the beginning 

of the task where the user selects the goal object, all the way to the 

end of the task where the task has been fully completed. 
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Chapter 1 Introduction 

 

1.1 Motivation 

According to the 2010 US Census Bureau report on disabilities, 

about ten percent of the working-age population has a disability, and 

there exists a great disparity among the employment-to-population 

ratio for citizens with disabilities (1). Assistive arms have proven to be 

effective devices for users with disabilities. These robotic arms can 

assist users in workplace environments to greatly improve capabilities 

for populations with disabilities in the workforce. They can also be 

used as assistive devices throughout users’ daily lives to improve their 

independence. Several commercial robotic arms have been developed 

specifically for assistive purposes, and can also be mounted on 

wheelchairs, such as the iARM and JACO (2).  

Even though WMRAs reduce dependence on caregivers, 

teleoperation of the robotic arm and coordination between the 

wheelchair and robotic arm operations still prove to be difficult for 

many users. For users that are completely locked-in, such as in many 

cases of amyotrophic lateral sclerosis (ALS), users are unable to
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practically teleoperate the robotic arm using a brain-computer 

interface (BCI) (3). For these reasons, it becomes desirable to design 

a WMRA system that executes complete ADL tasks from beginning to 

end with minimal user input using both the wheelchair motion and 

robotic arm manipulation. A WMRA system that can execute complete 

macro ADL tasks could greatly improve the independence of users with 

disabilities without the great cognitive burden of teleoperation.  

In order to allow for fully autonomous mobility and manipulation 

in the real-world environment, several control algorithms must be 

implemented on the WMRA system. A graphical user interface (GUI) 

will first present the user with a live view from the eye-in-hand camera 

mounted on the end effector of the robotic arm. After the user selects 

the goal object, the WMRA system must approach this object while 

avoiding possible obstacles in its path. This is done with visual 

servoing using template matching and feature extraction (4). A 

collision avoidance algorithm keeps track of obstacles and avoids them 

if necessary. Once the goal object has been approached, high-

resolution feature extraction is executed for the purposes of object 

detection and grasping.  

1.2 Goals 

Control methods for the complete 9-DoF WMRA system 

combining mobility and manipulation have previously been 
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implemented (3). These control systems will be introduced in the next 

chapter since this work builds on the existing control methodology. 

The main goal of this work is to use sensory data to implement control 

algorithms that allow autonomous execution of complete ADL tasks. 

Another method of control for the WMRA is by using an image-based 

visual servoing (IBVS) technique described in (2). Visual servoing is 

more desirable for the physical implementation since it is robust 

against dynamic moving environments and can overcome imprecisions 

of the hardware. We can use an IBVS visual servoing technique along 

with a monocular eye in hand camera mounted on the end effector to 

provide autonomous mobility and manipulation throughout the 

execution of ADL tasks. The input to the visual servoing system is the 

goal object selected by the user as well as the vision data, and the 

output is a set of velocities to control WMRA motion using Cartesian 

control. Other systems have demonstrated that visual servoing can be 

a reliable form of control for a 6-DoF assistive robotic arm as in (3) 

and (4). However, these implementations have their shortcomings as 

neither uses a physical WMRA system with combined mobility and 

manipulation, and neither implement a true 3-dimensional IBVS 

approach.  

Although it may be intuitive to use this visual servoing system 

from beginning to end, there are some pitfalls to the physical 



www.manaraa.com

 

4 
 

implementation. The method of feature extraction we use is very 

robust, but in cluttered environments where the goal object is far 

away, its reliability is very low due to great noise in the image. Since 

our system can use the wheelchair platform to approach objects very 

far away, it is possible that goal objects may be too far away for 

feature extraction to provide reliable data. Therefore, the 

implementations of this work can be split into two main sections that 

deal with two phases of the task execution: approaching the goal 

object and grasping the goal object. The flow from the approach phase 

to the grasp phase is controlled using weighted optimization to change 

the motion from strictly wheelchair motion (at the beginning of the 

task) to strictly arm motion (at the end of the task). This weighted 

optimization will be discussed in detail in the WMRA Control.  

After the user has selected the object in the camera view, 

template matching and feature extraction are used to keep track of 

where the object is in the environment and to allow for visual 

servoing. The WMRA platform keeps track of the goal object and 

moves towards it. During approach, mostly the mobile wheelchair 

platform is moving while the robotic arm is moving very little. The 

system also must be able to detect obstacles in the path to the goal 

object and navigate around them autonomously, if possible. If the 

system cannot autonomously navigate around the obstacles, the user 
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is prompted to move the wheelchair in an assisted teleportation mode. 

The approach algorithm fuses visual servoing and potential fields 

collision avoidance techniques. At the end of the approach phase, the 

WMRA is close enough to the goal object such that the robotic arm can 

reach and grasp the goal object.  

During grasping, the robotic arm autonomously orients itself to 

match the grasping orientation for the particular object, and then 

grasps the goal object with the gripper assembly mounted on the end 

effector. Using the eye-in-hand camera, the goal object is recognized 

using feature extraction and a set of objects in a database. Feature 

extraction allows the system to recognize the type of object as well as 

the grasping orientation. An image-based visual servoing technique is 

used to position and orient the manipulator. At the end of the grasping 

phase, the task is completed and the goal object can be delivered to 

the user on the wheelchair. Figure 1.1 visualizes the control flow 

implemented in this work.  
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Figure 1.1: Control flow of this work 

Finally, this work will present the physical testing results of these 

implementations on the WMRA during real-world ADL tasks. Several 

ADL tasks will be tested and motion and accuracy results will be 

presented. The next chapters will go into details on the background of 

the system and control algorithms implemented, and then the testing 

results will be presented along with a discussion and conclusion. 
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Chapter 2 Background 

 

There is a great deal of opportunity for assistive robotics to 

increase independence of users with disabilities. Robotic devices of all 

kinds have helped users with disabilities to become more capable in 

the workplace as well as decrease their dependence on caregivers. 

Assistive robots can help to decrease the disparity between 

employment among persons with disabilities and persons without 

disabilities. In this section, we will outline several assistive robotic 

devices that have been previously developed and implemented. We 

will also discuss mobile manipulators, in which some form of assistive 

robotic arm is attached to a mobile platform. In addition, we will also 

discuss the control methodology for mobile manipulation as some 

problems arise in the control with mobile manipulators. We will 

describe the WMRA mobile manipulator in detail as this is the assistive 

system our work will deal with. Finally, we will cover the control of the 

9-DoF WMRA system developed at the Center for Assistive, 

Rehabilitative, and Robotics Technologies (CARRT). 
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2.1 Assistive Robots 

Today, the existence of robots in the world is commonplace. 

Robotics technologies have been used in various applications such as 

manufacturing, remote teleoperation, research, and many more. 

Arguably, the most important application of robotics deals with 

creating assistive devices that greatly improve the independence of 

humans with disabilities. Development of assistive robotics began with 

non-mobile workstation robots (8), which has led most recently to the 

development of lower-cost mobile devices that can be mounted in 

various places, or to a mobile platform.  

Research with assistive robotics began with workstation robots, 

in which a robotic manipulator was permanently affixed to a workplace 

so that an operator could use the arm to execute tasks. The advantage 

to development of workstation robots is that they only need to be 

designed based on the set of tasks that are possible in its workplace 

location (8). Instead of creating a general-purpose robot, one could be 

built for a specific set of tasks inside the workplace. One example of a 

workstation robot was the Desktop Vocational Assistant Robot 

(DeVAR) developed at Stanford University (5). DeVAR used a 

commercial PUMA-260 robot mounted upside down on an adjustable 

track that allowed the arm to move back and forth in the workstation. 
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A gripper was customized that was suitable for its workplace-oriented 

tasks. Figure 2.1 shows the DeVAR system.  

 

Figure 2.1: The DeVAR system developed at Stanford University (5) 

Although workstation robots were effective for certain tasks 

inside a structured workplace, they were only useful at that specific 

location. For users that moved around to different locations, it is more 

desirable to have a smaller general-purpose robot that could be used 

in any location. Creating a mobile assistive robot that the user could 

carry with them would have a far greater impact on a users’ 

independence.  

2.2 Mobile Manipulators 

Mobile manipulators can be defined simply as a robotic arm 

attached to a moving platform. These devices can be found in various 
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different fields ranging from space exploration to military surveillance. 

Mounting a robotic arm on a mobile platform greatly improves the 

workspace of the system by allowing the manipulator to reach any 

location that the mobile platform can travel to. As technology has 

improved, commercially-available robotic arms have become smaller 

and lighter, allowing them to be easily integrated on a wide array of 

mobile platforms.  

Control of mobile manipulation has been studied extensively in 

research. The main advantage to mobile manipulators is that most of 

them inherently have redundancy (9), which allows them to be applied 

to several special-purpose applications. The kinematics of a 5-DoF 

manipulator and 2-DoF mobile platform have been described in (6) 

and allow a system that provides coordinated control to move the 

platform such that the target is within the workspace of the 

manipulator. This coordinated approach shows one control method for 

a redundant mobile manipulator. Another work described in (7) 

detailed combined kinematics for a non-holonomic mobile platform, 

such as a power wheelchair. Redundancy in the system was resolved 

using the projected gradient and reduced gradient optimization 

methods. In this work, a sample trajectory was followed where the 

manipulator was kept in a pre-specified orientation while the mobile 
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platform followed a circle. In these works, both the manipulator and 

mobile platform followed the same trajectory.  

Other works have allowed for control systems that create 

separate trajectories of the manipulator and mobile platform. One 

example of this work is described in (8), where kinematic 

redundancies were resolved using separate controls for mobility and 

manipulation. By allowing separate trajectories for the manipulator 

and mobile platform, specialized tasks can be more easily executed. 

We continue describing coordinated mobility and manipulation control 

in a later section relating specifically to the WMRA system.  

2.3 WMRAs 

Many users with disabilities depend on a power wheelchair 

already, and mounting a portable robotic arm on that platform allows 

them to use the manipulator any place their wheelchair can go. A 

WMRA consists of a robot arm mounted on a mobile wheelchair 

platform. In the 1990s and early 2000s, two popular robotic arms 

were developed that could be mounted on a power wheelchair. The 

first of these was the Raptor robotic arm developed by Applied 

Resources (see Figure 2.2), which consists of a 4-DoF robotic arm and 

a planar gripper (9). The Manus manipulator (see Figure 2.3) is 

perhaps the more popular robotic arm, developed by Exact Dynamics 

(10). The Manus (or the iARM, which is a modified version of Manus) is 
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a 6-DoF robotic arm with a planar gripper. It was designed for 

Cartesian control using a joystick or keypad interface. The latest 

commercially-available robotic arm is the JACO (see Figure 2.4), 

developed by Kinova in 2009. The JACO consists of a 6-DoF robotic 

arm with a 3-finger gripper assembly. The main advantage to JACO is 

that it uses a 3-axis joystick interface, which makes teleoperation in 

Cartesian modes much easier than the Manus.  

   

Figure 2.2: Applied Resources Raptor assistive arm (9) 
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Figure 2.3: Exact Dynamics iARM assistive arm (10) 

 

Figure 2.4: Kinova JACO assistive arm (11) 

These modern commercially-available robotic arms can be used 

for many general purpose applications, but are designed specifically to 

be used as a WMRA. Many persons with disabilities desiring an 

assistive robotic arm are already dependent on a power wheelchair 

(15), so it is intuitive to mount an appropriate manipulator onto their 

wheelchair platform so that they can use it throughout the course of 
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their daily lives. One important aspect of WMRA design is where to 

mount the manipulator such that it does not hinder the user’s or 

wheelchair’s movement and is able to be intuitively teleoperated (12). 

Through several research studies, WMRAs have proven to be effective 

assistive devices for users with disabilities.  

Even though WMRAs have had a great impact on the 

independence of users with disabilities, their design and control can 

still be improved. Commercial manipulators such as the iARM and 

JACO consist of 6-DoF robotic arms, which are usually suitable for 

reaching a large workspace. However, expanding the design of the 

manipulator to a 7-DoF robotic arm allows for many optimizations 

through the redundant DoF. A 7-DoF system allows many different 

arm configurations while reaching the same end effector position and 

orientation. For the WMRA application, this is a very desirable feature 

for obstacle avoidance since the workspace of the robotic arm is 

confined to areas outside the wheelchair so that no joints come in 

contact with the user sitting on the wheelchair. Optimization of the 

redundant system allows the 7-DoF robotic arm to reach its desired 

positions more efficiently and based on the criterion than a 6-DoF 

robotic arm. Additionally, joint limit avoidance and singularity 

avoidance become more robust since a redundant DoF is available for 

manipulation.  
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The WMRAs developed at the Center for Assistive, Rehabilitation 

and Robotics Technologies consist of a 2-DoF power wheelchair and a 

7-DoF robotic arm, providing for a complete 9-DoF system (see Figure 

2.5). The robotic arm has 7 revolute joints with a gripper mounted on 

the end effector designed for generic ADL tasks. The power wheelchair 

is a standard wheelchair that is commercially available and has been 

modified. The advantage to the CARRT WMRA systems is mainly the 

added performance of the 7-DoF manipulator and combined control of 

both mobility and manipulation.  

 

Figure 2.5: WMRA developed by CARRT at USF 

Interface devices for WMRAs have traditionally been 

cumbersome for users and have a very large learning curve (15). 

Common interface devices for commercially-available WMRAs consist 

mainly of joysticks, keypads, eye gaze, voice recognition, and sip and 

puff devices. The large learning curve exists since it is not intuitive for 

humans to teleoperate a robotic arm in 3-dimensions using a 2-



www.manaraa.com

 

16 
 

dimensional interface device. Integrating 3-dimensional joysticks as 

with the JACO makes the device easier to teleoperate, but there still 

exists a learning curve for users to become practically efficient with 

the device. In order to improve control of WMRA systems beyond that 

of teleoperation using 3-dimensional input devices, it becomes 

necessary that the system become more task-oriented by adding 

autonomous capabilities to it.  

Even though WMRA devices are mounted on the wheelchair 

platform, their control systems are still separated. In order to move 

the mobile wheelchair platform, the user must operate it with its 

dedicated joystick interface device, and then to manipulate the WMRA, 

the user must switch to the manipulator’s interface device. In order to 

simplify the control systems, it becomes desirable to integrate both 

the wheelchair and WMRA control through a single interface device. To 

build a robust task-oriented control system, it also becomes desirable 

to coordinate control of both the wheelchair and robotic arm. To 

implement a robust task-oriented WMRA platform, control must take 

both mobility and manipulation into account.  
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2.4 WMRA Control1 

The visual servoing control system developed in this work 

requires coordinated control of both mobility and manipulation. For the 

7-DoF manipulator, numerical solutions exist to have it follow a 

desired trajectory (13). The other 2-DoF in the WMRA system are 

provided by the nonholonomic power wheelchair. The 2-DoF consist of 

linear translation and rotation about a fixed axis. When controlling the 

mobile platform, velocities must be given for the linear translation as 

well as rotation.  We use the weighted least-norm solution with 

singularity-robust pseudo inverse to resolve redundancies in the 

mobile manipulator system. As we will discuss later, we also use this 

weighted optimization to control coordination of the wheelchair 

platform and robotic arm during executed ADL tasks. Combination of 

the robotic arm and wheelchair kinematics is done using Jacobian 

augmentation, which can give the flexibility of using conventional 

control and optimization methods without compromising the total 

coordinated control. Full kinematics and detailed equations can be 

found in a previous work concentrating on the control system (13).  

                                    
1 WMRA control theory is produced from (13) 
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Figure 2.6: Coordinate frames of the WMRA (13) 

Assuming that the manipulator is mounted on the wheelchair 

with L2 and L3 offset distances from the center of the differential drive 

across the x and y coordinates respectively, and L1 is the distance 

between the wheels (see Figure 2.6 for L-distances), then the mapping 

of the wheels’ velocities to the manipulator’s end effector velocity 

along its coordinates is defined by: 

                                        ̇         ̇  (2.1) 

where Jc and Jw are the Jacobian matrices that map the arm base 

velocities to the end-effector velocities (without arm motion) and the 
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wheels’ velocities to the arm base velocities, respectively. The 

wheelchair induced end effector velocity  ̇  and wheelchair velocity  ̇  

are: 

                             ̇  [ ̇  ̇  ̇  ̇  ̇  ̇]  (2.2) 

                                        ̇  [
 ̇ 

 ̇ 

] (2.3) 
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where Pxg and Pyg are the x-y coordinates of the end-effector relative 

to the arm base frame, Ø is the angle of the arm base frame (which is 

the same as the rotation angle of the wheelchair base), and L5 is the 

wheels’ radius (see Figure 2.6). The above Jacobian and the Jacobian 

of the arm are combined together to control the end-effector. 

The wheelchair will move forward when both wheels have the 

same speed and direction while rotational motion will be created when 

both wheels rotate at the same velocity but in opposite directions. 

Since the wheelchair’s position and orientation are our control 
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variables rather than the left and right wheels’ velocities, a relationship 

between the wheels’ rotational velocities and the linear and rotational 

velocities of the wheelchair was derived   ̇  ̇ : 

                                 [
 ̇ 

 ̇ 

]  [

 

  

   

    

 

  

  

    

]  [
 ̇
 ̇
] (2.6) 

7-DoFs are provided by the robotic arm mounted on the 

wheelchair. From the DH parameters of the robotic arm specified in an 

earlier publication (13), the 6x7 Jacobian that relates the joint rates to 

the Cartesian speeds of the end effector based on the base frame is 

generated according to Craig’s notation (14): 

                                         ̇      ̇  (2.7) 

where  ̇  [ ̇  ̇  ̇  ̇  ̇  ̇] 
 
is the task vector,  ̇  

[ ̇  ̇  ̇  ̇  ̇  ̇  ̇ ]
 
 
is the joint rate vector, and JA is the 

robotic arm’s Jacobian. By combining the wheelchair and arm 

kinematics using Jacobian augmentation, we find the total system 

kinematics (13).  

Redundancy is resolved in the algorithm using weighted S-R 

inverse of the Jacobian to give a better approximation around 

singularities, and to use the optimization for different subtasks. 

Manipulability measure (15) is used as a factor to measure how far the 

current configuration is from singularity. This measure is defined as 
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  √          . The S-R Inverse of the Jacobian in this case is 

defined as: 

                                              
   (2.8) 

where I6 is a 6x6 identity matrix and k is a scale factor. It has been 

known that this method reduces the joint velocities near singularities, 

but compromises the accuracy of the solution by increasing the joint 

velocities error. Choosing the scale factor k is critical to minimize the 

error. Since the point in using this factor is to give approximate 

solution near and at singularities, an adaptive scale factor is updated 

at every time step to put the proper factor as needed: 

                            ⟨
   (  

 

  
)
 
         

          

  (2.9) 

where w0 is the manipulability measure at the start of the boundary 

chosen when singularity is approached, and k0 is the scale factor at 

singularity. 

Weighted Least Norm solution proposed by (16) can be 

integrated to the control algorithm to optimize for secondary tasks. In 

order to put a motion preference of one joint rather than the other 

(such as the wheelchair wheels and the arm joints), a weighted norm 

of the joint velocity vector can be defined as: 

                                    | |  √     (2.10) 
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where W is a 9x9 symmetric and positive definite weighting matrix, 

and for simplicity, it can be a diagonal matrix that represent the 

motion preference of each joint of the system. For the purpose of 

analysis, the following transformations are introduced: 

                                                 (2.11) 

                                                (2.12) 

Using (2.8), (2.10), (2.11), and (2.12), it can be shown that the 

weighted least norm solution integrated to the S-R inverse is: 

                         | |                    
   ̇ (2.13) 

The above method has been used in the 9-DoF WMRA system 

with the nine control variables (V) that represent the seven joint 

velocities of the arm and the linear and angular wheelchair’s velocities. 

An optimization of criteria functions can be accomplished when used in 

the weighting matrix W. 

The criteria functions used in the weight matrix for optimization 

can be defined based on different requirements. For the robotic arm, 

the physical joint limits can be avoided by minimizing an objective 

function that represents this criterion. One of these mathematical 

representations was proposed by (16) as follows: 

                    ∑
 

 
 

               
 

                                       

 
    (2.14) 

where qi is the angle of joint i. This criterion function becomes 1 when 
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the current joint angle is in the middle of its range, and it becomes 

infinity when the joint reaches either of its limits. The gradient 

projection of the criterion function can be defined as: 

          
     

   
 

                                             

                     
                      

 (2.15) 

When any particular joint is in the middle of the joint range, 

(2.15) becomes zero for that joint, and when it is at its limit, (2.15) 

becomes infinity, which means that the joint will carry an infinite 

weight that makes it impossible to move any further. 

The diagonal weight matrix W can be constructed as: 
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 (2.16) 

where wi is a user-set preference value for each joint and wx and wφ 

are the weights associated with the position and orientation of the 

wheelchair. These values can achieve the user preference if joint limits 

are not approached and wheelchair motion is at its desired position.  
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We will later define criteria functions for the user-set preference 

values of the joints of the manipulator as well as those for the 

wheelchair. This weighted optimization using the weight matrix W 

allows us to coordinate mobility and manipulation during all stages of 

the autonomous task execution.  

2.5 Vision-Based Control of Mobile Manipulators 

Vision-based control has become popular in both fixed-base 

manipulators as well as mobile manipulators. The advantages of 

vision-based control become more prevalent in physical 

implementations of robotic systems where dynamic environments and 

inaccurate hardware are experienced. Vision-based control strategies, 

such as visual servoing, allow a system to approach and grasp objects 

by using a goal image saved in a database. This image is matched with 

the object in the camera image using some form of feature extraction, 

and the robot is manipulated until the camera image matches the goal 

image. Since this control strategy relies on live visual feedback 

information rather than strictly position-based control, it is able to 

overcome hardware inaccuracies such as slipping joints on a robotic 

arm or encoder position errors. Vision-based control is also robust 

against moving objects in a dynamic and cluttered environment since 

the control uses live feedback from the scene.  
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Image-based visual servoing (IBVS) is perhaps the most popular 

and simplest form of visual servoing. It provides a correspondence 

between matched features in the camera image and goal image and 

gives as output a velocity controller for the robot system. Therefore its 

control strategy is strictly based on image features rather than world 

positions. The features used in IBVS are immediately available in the 

images. Position-based visual servoing (PBVS) is another visual 

servoing control strategy in which 3D position of the goal object is 

estimated using various different methods. In this work, we 

concentrate on the IBVS technique. We will cover the mathematics 

behind the IBVS algorithm later on in Chapter 4. Visual servoing 

approaches are also defined in great detail in works such as (17) and 

(18), in which visual servoing in this work is based on.  

Several works demonstrate an application of visual servoing in 

fixed-base as well as mobile manipulators. In (19), the Manus robotic 

arm was controlled using a visual servoing technique relying on color-

based feature extraction. This implementation was fairly reliable at 

being able to grasp objects in an unstructured environment, but 

problems arose when objects with poor color information were 

selected. Rather than relying strictly on color information for tracking 

the goal object, in (3) the work was improved by using scale-invariant 

feature transform (SIFT) to track features between the goal and 
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camera image. This allowed a very robust visual servoing algorithm 

working towards autonomous grasping. The downside to this 

implementation is that the image of the goal object’s desired pose 

must be saved in a database such that the environment must be 

somewhat structured. In a separate project (4), the Manus arm was 

used along with SIFT and a 2 1/2D visual servoing technique to 

autonomously grasp objects. This work split the motion into gross and 

fine motion, with different control systems for each phase. This 

approach did not implement a true 3D IBVS technique, but allowed 

objects to be grasped autonomously.  

The aforementioned works concentrated on a fixed-base 

manipulator, so the workspace was limited to what the robotic arm 

could reach. A visual servoing technique extended to a mobile 

manipulator can greatly increase the workspace of the system, but 

also adds complexities concerning coordinated control of mobility and 

manipulation, collision avoidance for obstacles in the environment, and 

the possibility of losing the features being tracked due errant to 

movement of the mobile platform. There exist some works dealing 

with visual servoing of mobile platforms, but they typically involve 

very simple systems with low DoF (9). A more robust work that 

implements IBVS on a nonholonomic mobile manipulator with a 5-DoF 

robotic arm (20) also uses Q-learning to aid the mobile platform from 
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losing track of the visual features. This work decouples control of 

mobility and manipulation such that the mobile platform moves until 

the goal object is within the workspace of the manipulator, and then 

the manipulator grasps the object.  

While these implementations prove that visual servoing is a 

robust and reliable control technique for fixed-base and mobile 

manipulators, they all have their shortcomings. Although some of the 

works provide an end to end autonomous solution for grasping objects 

(7), they do not use a true 3D IBVS technique. The works 

concentrating on fixed-base manipulators using the Manus arm can 

only grasp objects near the fixed-base. Expanding this work to a 

mobile manipulator such as a WMRA can greatly increase the abilities 

of the system. Works dealing with visual servoing of mobile 

manipulators use very simple robotic arms. Using a 7-DoF manipulator 

on the mobile platform would greatly increase the performance and 

capability of the entire system. Previous works focus on decoupling 

control of mobility and manipulation, but by coordinating these 

controls, the system can become much more stable and less choppy. 

2.6 Visual Servoing of the 9-DoF WMRA

In this work, we desire to implement full 3D IBVS on the 9-DoF 

WMRA introduced above. To address the shortcomings of other works, 

we develop a control system that controls combined mobility and 
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manipulation simultaneously throughout the task. In order to design a 

reliable visual servoing control for the physical WMRA, we split the 

task into two phases.  

During the approach phase, we use visual servoing with a single 

tracked point based on camshift (21), which gives us 2D velocity 

control initially. At the beginning of the approach phase, mostly 

wheelchair motion is used with limited arm motion. As the WMRA 

approaches the goal object, wheelchair motion should decrease as arm 

motion increases. Once a threshold distance from the end effector to 

the goal object is reached, we instantly switch to 3D IBVS used during 

the grasping phase.  

By the time we reach the grasping phase and begin using 3D 

IBVS, the wheelchair system has slowed to a stop and the arm motion 

becomes entirely unrestricted. We use SIFT to extract and match 

features between the camera and goal image. Using SIFT with IBVS, 

and at least three matched points, we extract velocity control for full 

6-DoF control based on the end effector of the WMRA. The arm 

positions and orients with respect to the IBVS velocity control until the 

velocities reach zero. At this point, the desired position and orientation 

has been reached and the system can now grasp the goal object. The 

gripper paddles are then closed to grasp the goal object, and it is 
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delivered via pre-programmed position control. The task has now been 

completed using both approach and grasping phases. 
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Chapter 3 Approach 

 

During the approach phase, the WMRA system uses combined 

mobility and manipulation to approach the goal object such that it can 

be grasped. The goal object is selected by the user through the GUI 

screen and is tracked using methods described below. Motion is 

controlled using weighted optimization, and the criteria functions 

based on the image data are defined in the following sections. A 

potential fields collision avoidance method is also implemented during 

the approach phase to avoid possible obstacles detected using 

proximity sensors. At the end of the approach phase, the system will 

be in a position and orientation to be able to grasp the goal object 

since it has been tracked throughout the phase.  

3.1 Camshift Tracking 

Since we are splitting up the autonomous task into approach and 

grasping phases, we can simplify the approach phase. Since mainly 

gross motion is required during this phase, it is not necessary to orient 

the manipulator during approach. We can use strictly 2-dimensional 

visual servoing to center the mobile platform and manipulator on the 
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goal object as it approaches while controlling coordination of mobility 

and manipulation using weighted optimization introduced in Section 

2.4 above.  

At the beginning of the approach phase, the user is presented 

with a live camera feed of the workspace. They select the goal object 

through the GUI by selecting that area of the camera image. Since we 

therefore have a selection of the area of the scene we need to 

approach, we can use a simple camshift technique implemented in the 

OpenCV open source computer vision library (21). Our camshift 

function returns the centroid of the matched object in the scene 

image. This single centroid point is used for 2-dimensional visual 

servoing as described in the following section.  

3.2 Visual Servoing 

For the approach phase, we use a method similar to visual 

servoing, but since mostly wheelchair motion is being utilized, it is only 

necessary for 2-dimensional visual servoing. In order to center on the 

selected area, we must adjust wheelchair motion so that the object’s 

centroid reaches the center of the image plane, denoted by a=(cu,cv). 

Wheelchair motion is controlled through wx and wφ from (2.16), which 

control wheelchair translation and rotation about its fixed axis, 

respectively. Since we wish to initially use mostly wheelchair motion 

during this phase, we set w1 through w7 using a criteria function based 
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on distance so that the manipulator will move more as the WMRA 

system approaches the goal object.  

The wheelchair translation wx is mainly related to the distance 

from the camera frame to the goal object, in the camera frame’s z-

direction. We can approximate this distance by means of proximity 

sensor or disparity map generated from a stereoscopic camera 

mounted on the end effector. Since wx is directly proportionate to the 

distance on z, we have: 

                                       
  

  
 (3.1) 

where λ is an appropriate gain, z is the approximated distance from 

the camera frame to the goal object, and zi is the initial distance from 

the camera frame to the goal object.  

The desired wheelchair rotation wφ is directly related to the 2-

dimensional visual servoing error. Since setting wφ is only able to 

minimize the error in the camera frame’s x-direction, we compute the 

error e(t)x using: 

                                                  (3.2) 

where sx is the current location of the centroid of the matched 

template relating to the x-direction, and cu is the desired location of 

the template which is the center of the image plane. Since wφ is 

directly proportionate to e(t)x computed in (3.2), we have: 
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 (3.3) 

where λ is an appropriate gain and e(t)x max is the maximum possible 

error in the x-direction.  

We also desire to set the user-set preference values for w1 

through w7 in order to control arm motion. We should use mostly 

wheelchair motion when the goal object is far away, and use mostly 

arm motion when the goal is very close. Therefore, we define the 

arm’s user-set preference values for all 7 joints from (2.16) as: 

                                             (3.4) 

where λ is an appropriate gain and z is the approximated distance 

from the camera to the goal object. When the distance is high, we 

have a large weight for arm motion so that very little arm motion is 

allowed. When the distance is low, we have a small weight for arm 

motion so that full arm motion is allowed.  

Using equations (3.1), (3.3), and (3.4) we can set wheelchair 

motion so that the WMRA will approach the selected goal object area. 

As the wheelchair approaches the goal object, translational velocity 

resulting from wx will decrease until it reaches zero, while the 

rotational velocity will be manipulated such that the WMRA centers on 

the goal object. Once the WMRA system has approached a predefined 

distance from the goal object such that the object is within the 
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workspace of the robotic arm, the grasping phase begins as described 

in Chapter 4. 

3.3 Potential Fields 

The WMRA system has been designed to be a modular platform 

where proximity sensors of various kinds can be mounted in several 

different orientations. In order to give physical distance information for 

our collision avoidance, we use simple infrared proximity sensors 

mounted on the forward part of the mobile platform. Since mostly 

forward motion is used in our visual servoing autonomous task 

execution, we are mainly only concerned with obstacles that may exist 

in the forward direction of the WMRA.  

 

Figure 3.1: Proximity sensors mounted on the WMRA 
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Figure 3.1 shows the positions and range cones of the four 

infrared proximity sensors mounted on the WMRA mobile platform. We 

use Sharp GP2Y0A21YK sensors mounted on brackets. 

 

Figure 3.2: Stereoscopic camera on the WMRA 

In addition to the infrared proximity sensors, we can also use a 

stereoscopic camera to create a disparity map. A Point Grey Research 

BumbleBee 2 camera is mounted on the end effector, as seen in Figure 

3.2. We use Point Grey’s API to extract a disparity map. Similar to the 

physical sensors, we group the disparity map into zones. We then 

compute the average intensity values, or average distance, for each 

zone in the disparity map. These intensities are calibrated with the 

physical sensors with respect to distance of obstacles. Figure 3.3 

shows a sample disparity map with the zone areas noted.  
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Figure 3: Disparity map and zone areas 
 

Fusing both physical and computer vision sensors allow the 

collision avoidance system to be much more reliable. Obstacles that 

may not be recognized using stereoscopic vision are picked up by the 

physical sensors. With the addition of stereoscopic vision, we can use 

computer vision to estimate positions of objects in parts of the control 

algorithms in the future. We use a simple potential fields method using 

the physical distances measured by the infrared proximity sensors. 

This provides a vector value that can be used along with our visual 

servoing weights computed above.  

3.4 Fusing Visual Servoing and Potential Fields 

We can fuse the data we receive from our visual servoing and 

potential fields systems. We take the attractive force from the visual 
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servoing since this is the direction the system should travel based on 

the image data. We take the repulsive force from the potential fields 

collision avoidance since this is the direction the system should avoid 

due to collision with a detected obstacle.  

From the sensor positions shown in Figure 3.1 above, we see 

that there are eight zones. For each zone, we combine the attractive 

and repulsive forces. We modify wφ from (3.3) so that it is computed 

for each zone: 

                                     
 

         

       

   ⃗⃗  (3.5) 

where   ⃗⃗  is the repulsive force from the proximity sensor distance for 

zone i and       
 relates to the attractive force from the visual servoing 

system. The value    
 is computed for each sensor zone, and then the 

control system chooses the    
 with the greatest value and moves in 

that direction. This system allows the WMRA to detect obstacles using 

the proximity sensor array and then navigate around the obstacle to 

continue approaching the goal object. If the goal object leaves the 

camera frame, then the system halts and the user is prompted to 

teleoperate and then reselect the goal object.  

3.5 Task Execution 

At the beginning of the autonomous ADL task execution, the 

user is first presented with a GUI screen where a view of the 
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workspace is displayed through the eye-in-hand monocular camera 

mounted on the end effector. The user selects the desired goal object 

by clicking on a part of the object on the screen. As described in 

Section 3.1, we use the camshift algorithm developed in the OpenCV 

open-source computer vision library. Figure 3.4 shows the GUI before 

and after selecting the goal object. The user is provided with feedback 

by means of the camshift program drawing a red circle around the 

tracked object.  

 

Figure 3.4: GUI for approach phase 

If at any time the camshift algorithm fails, the entire system 

halts and prompts the user to reselect the goal object on the same 

GUI. This is important because during rare cases, the camshift 

algorithm may return an errant centroid that would cause large 

velocities for mobility or manipulation on the WMRA system. Code has 
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been implemented to detect an errant centroid in camshift, and the 

user is prompted to reselect the goal object after the system 

immediately halts.  

Since the weights controlling arm motion are controlled based on 

the distance from the camera to the goal object, initially the arm 

moves very little and mostly the wheelchair platform moves. The 

platform centers in the x-direction as it approaches in the z-direction. 

These movements are computed based on (3.1) and (3.3), while arm 

motion is computed based on (3.4). When the system has almost 

approached the goal object, wheelchair movement is minimized until it 

halts while arm motion has increased to full motion. Once the system 

reaches a threshold distance from the goal object, the grasping phase 

begins as described in Chapter 4. 

 

  



www.manaraa.com

 

40 
 

Chapter 4 Grasping 

 

At the end of the approach phase, the WMRA is positioned so 

that strictly arm motion can be used to orient and position the 

manipulator to grasp the goal object. At this point, the WMRA is close 

enough so that the camera can see good detail of the goal object. We 

can now use a feature extraction method since we are close enough to 

the goal object. As long as we have at least three matched keypoints, 

we are able to use a full 3-dimensional visual servoing technique to 

position and orient the manipulator. At the end of the grasping phase, 

the gripper is positioned so that when the paddles are closed, the goal 

object is grasped. The grasped goal object can then be delivered to the 

user sitting in the wheelchair by means of pre-programmed position 

control where the gripper is positioned so that the user can reach and 

take the goal object.  

4.1 SIFT Feature Extraction 

It should be noted that any feature extraction method can be 

used with visual servoing control. However, since the reliability of the 

velocity control output by the IBVS system depends on the reliability 
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of the extracted features, a reliable and accurate algorithm should be 

used. SIFT (2) was developed by David Lowe by combining several 

image processing techniques. The algorithm extracts feature vectors 

from the image that are invariant to translation, size, rotation, 

illumination, and geometric distortion. A k-d tree algorithm is used to 

index these extracted features and to remove false matches. Features 

are clustered using Hough transforms, and the clusters are verified 

using a linear least squares method. Finally, based on a probabilistic 

model outliers can be rejected. Lowe’s SIFT feature extraction and 

matching algorithms have proven to be very robust, especially due to 

its invariance to image transformations and differences typical in real-

world image processing. The downside to the SIFT algorithm is that 

performance is very low due to intensive processing required.  

Lowe’s SIFT implementation has been provided to the 

community by means of a closed-source binary executable. Rob Hess 

provided an open-source implementation of SIFT using the OpenCV 

open-source computer vision library in (22). Hess’s open-source 

implementation provided the same performance and results of Lowe’s 

original closed-source implementation. In our program, we use parts 

of Hess’s open-source SIFT implementation.  
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4.2 Image-Based Visual Servoing 

Visual servoing relies on sets of features extracted from a goal 

image and a scene image and then compares them to compute the 

velocities needed to match the scene image with the goal image. The 

goal image is a sample image taken from the eye in hand camera 

when the end effector has reached its desired position and orientation. 

Sample goal and scene images can be viewed in Figure 4.1. Velocities 

outputted from the IBVS move the WMRA system until it has reached 

the goal orientation. At this point, the gripper paddles can close and 

grasp the goal object, and the task is completed.  

 

Figure 4.1: Sample scene (left) and goal (right) image 

We desire to have a reliable and accurate method of feature 

extraction since the reliability of the visual servoing control relies on 

accurate feature extraction. We use the SIFT algorithm as described in 

Section 4.1 above. SIFT performance is improved on the WMRA 

system by saving the set of features extracted from the goal image so 
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that it is not searched at every iteration. Performance is further 

improved by reducing the resolution slightly, and only searching areas 

in the scene image that are likely to contain goal image features. For 

our code implementation, we use the open source SIFT library 

developed by Rob Hess (22).  

The goal of visual servoing is to minimize an error computed by: 

                                                  (4.1) 

where the features extracted in the scene image that match features 

from the goal image are represented by s(m(t),a), where m(t) is the 

vector of image measurements and a is a set of camera parameters. 

In our case, m(t) consists of the image coordinates of the matched 

features in the scene image. From this point forward, we can represent 

s(m(t),a) simply as s. The vector s* consists of the desired goal image 

measurements. In our case, s* contains the image coordinates of the 

features in the goal image. Therefore, from (4.1), we see that the 

error e(t) is simply the difference between s and s*.  

For our application, we desire to design a velocity controller that 

can control the WMRA system using this visual servoing in Cartesian 

control based on the end effector. The relationship between the time 

variation of s and the camera velocity is described by: 

                                            ̇      (4.2) 
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where Ls is the image Jacobian related to s. The term image Jacobian 

is used interchangeably with feature Jacobian and interaction matrix. 

The vector vc is the velocity controller for the WMRA system, which 

consists of vc and ωc, the instantaneous linear velocity and angular 

velocity, respectively, in all three dimensions. For visual servo control, 

vc=(vx, vy, vz, ωx, ωy, ωz). Using (4.1) and (4.2), we find the 

relationship between the time variation of the error and the camera 

velocity: 

                                           ̇      (4.3) 

where Le=Ls. We wish to solve (4.3) for vc so that we can use it as 

velocity input to the WMRA control system. Therefore, we finally find: 

                                           -   
   (4.4) 

where λ is a gain for the velocity control and the Moore-Penrose 

pseudo-inverse of Le is taken to solve for vc.  

We now define the image Jacobian to use in (4.4). We must first 

relate the 3-dimensional point X=(X,Y,Z) to the 2-dimensional point 

x=(x,y): 

                                   
  

 

 
       

  
 

 
       

 (4.5) 

where m=(u,v) from (4.1) above is the coordinates in pixels of the 

image feature point, and a=(cu,cv) is the set of camera parameters 

with the principal point described by cu and cv. The image Jacobian is a 
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6x2k matrix for k matched feature points. The image Jacobian Lx, 

related to x from (4.5) is: 

                    [

  

 
 

 

 

 
  

 

 

 

          

         
] (4.6) 

where Z is the estimated distance of the feature point from the camera 

frame and x and y are from (4.5). In order to control the WMRA 

system using 6-DoF Cartesian control, we must have at least k=3 

matched feature points to determine the velocities. We stack the 

interaction matrices for k points: 
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 (4.7) 

Similarly, we also stack the errors such that e from (4.4) is: 

                                           

[
 
 
 
 
 
 
   

   

   

   

 
   

   ]
 
 
 
 
 
 

 (4.8) 

We have now designed a visual servoing control system based 

on (4.4) from (17) and (18) that can output velocity control for the 

WMRA so that the system can minimize the error such that a selected 

goal object can be approached for execution of ADL tasks. When the 

visual error has been minimized and the velocities of the system 
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approach zero, then the robotic arm has reached its desired position 

and orientation. At this time, the gripper paddles can be closed to 

grasp the goal object and deliver it to the user in the wheelchair.  

4.3 Task Execution 

We switch from the approach phase to the grasping phase when 

a threshold distance on z between the camera frame and goal object is 

reached. This switch is immediate and seamless so that the user 

sitting in the wheelchair does not experience any disruption in 

wheelchair or arm movement. No further input from the user is 

required during the grasping phase such that the entire execution of 

the ADL task is autonomous from beginning to end. Feedback is given 

to the user by means of a GUI based on Hess’s open-source SIFT 

implementation (see Figure 4.2).  
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Figure 4.2: GUI for grasping phase 

From Figure 4.2, we can see that matched features are 

visualized on the left. We run several noise reduction algorithms inside 

the SIFT code to reduce the number of false SIFT feature matches. 

The screen on the right shows positive matched SIFT features in blue 

and rejected false matched SIFT features in red. Once the goal 

position and orientation has been reached as determined strictly by 

image data, the gripper paddles close to grasp the goal object and it is 

delivered to the user sitting in the wheelchair. We will examine data 

and results from physical testing of these task executions in Chapter 5 

below.
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Chapter 5 Physical Testing of ADL Tasks 

 

In order to demonstrate the physical results of the 9-DoF 

combined visual servoing theory described above, we design an ADL 

task that the system can autonomously execute and provide data and 

results below. Physical design of the WMRA can be reviewed in Section 

2.3 and 2.4 above as well as in (13) in further detail. Figure 5.1 shows 

the 9-DoF WMRA platform used for physical testing in this work.  

 

Figure 5.1: The 9-DoF WMRA system used for testing 
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The gripper assembly has been slightly modified in order to 

mount an eye-in-hand monocular camera for visual servoing. We use a 

standard commercially-available USB webcam for the eye-in-hand 

camera, specifically a Logitech C910. For estimating the distance 

between the camera frame and the goal object, we use an infrared 

proximity sensor. The Sharp GP2Y0A21YK proximity sensor is mounted 

directly beneath the camera. Figure 5.2 shows the camera and 

proximity sensor mounted beneath the gripper assembly.  

 

Figure 5.2: Camera and proximity sensor on gripper assembly 

5.1 Description of ADL Tasks 

To demonstrate an application of this 9-DoF visual servoing 

combined mobility and manipulation, we design an ADL task that can 

be executed autonomously from beginning to end using this system. 
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We use a “go to and pick up” ADL task where the user selects the goal 

object on the GUI and the 9-DoF WMRA system approaches and then 

grasps the goal object autonomously. For this task, we place a goal 

object far away from the WMRA system so that movement of the 

mobile platform is necessary to successfully grasp the goal object. This 

demonstrates combined mobility and manipulation of our control 

system. The WMRA uses the wheelchair and arm to center on the goal 

object and approach it. When a threshold distance from the camera 

frame to the goal object is reached, the grasping phase then begins 

and the manipulator is positioned and oriented to grasp the goal 

object. Finally, the gripper paddles close to grasp the goal object and it 

is delivered to the user sitting in the wheelchair.  

During teleoperation of the WMRA system for this “go to and 

pick up” ADL task, the user would first use the joystick to move the 

wheelchair close enough such that the goal object is within the 

workspace of the robotic arm. The user would then switch to 

controlling the arm by means of various user interfaces provided, such 

as laptop touch screen control. After the gripper is correctly positioned 

and oriented, a command would be sent to close the gripper paddles. 

Finally, a command would be sent to move the arm back to a position 

in reach of the user for them to retrieve the goal object.  
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During autonomous execution of this “go to and pick up” ADL 

task, the only user input would be initially selecting the goal object on 

the GUI screen. After the object was selected, the approach phase 

would begin where combined mobility and manipulation are used to 

move the WMRA close to the goal object while centering with the 

wheelchair and arm. When the WMRA is close enough, the grasping 

phase will begin and strictly arm motion will position and orient so that 

the goal object is within the paddles of the gripper. At this time, the 

gripper closes the paddles and delivers the goal object to the user 

sitting in the wheelchair so that they can retrieve it.  

5.2 Physical Testing Results 

We execute the “go to and pick up” task autonomously with 

several different objects. Each object is enrolled in the image database 

for visual servoing so a positive match exists for the goal image of that 

particular object. Sample results from the physical execution of the 

approach phase can be seen in Figure 5.3.  
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Figure 5.3: Weights during the approach phase 

As we can see, initially very little arm motion is used, where the 

arm weight w1=w2=…=w7 is very high. As the system approaches the 

goal object and the distance on z is reduced, the resulting arm weight 

reduces until it becomes very low and full arm motion is used. Since 

initially platform motion should be used mostly, we see that wx is low. 

As the distance on z is reduced, wx becomes very large once it 

approaches the goal object. In this manner, the wheelchair motion is 

reduced until it halts during the switch to the grasping phase. 

Rotational movement of the wheelchair is controlled with wφ where the 

weight depends on the necessary rotational movement to center the 

wheelchair on the goal object during approach.  
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When the system switches to the grasping phase, the weights on 

the wheelchair are set to infinity so that no further mobility is used. 

Arm weight is minimized so that full manipulation is possible, except 

for when joint limits or singularities prevent movement. 3-dimensional 

IBVS is now used to position and orient the arm. The velocity output of 

the IBVS system can be visualized in Figure 5.4 and Figure 5.5.  

 

Figure 5.4: Translational velocities during the grasping phase 
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Figure 5.5: Rotational velocities during the grasping phase 

As we can see from Figure 5.4 and Figure 5.5, the velocities for 

the end effector converge at a minimum at the end of the grasping 

phase. Although some noise exists in the IBVS velocity output, the 

system stays stabile during testing and is able to grasp the goal object 

(see Figure 5.6).  
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Figure 5.6: Grasping the goal object 

Reliability of the physical system is generally very good, and 

typically the control system will end in a successful grasp. After testing 

the “go to and pick up” task 30 times with the same initial and goal 

positions, the system resulted in successful task execution 83.33% of 

the time. During rare cases where the goal object is lost during the 

approach phase, the entire system immediately halts and the user is 

prompted to reselect the goal object. In some cases when poor image 

features exist due to environmental effects such as lighting or 

cluttered backgrounds, the system experiences additional noise, but 

most of the time once the camera gets close enough to the goal 

object, good features can then be extracted and stability increases. 

Most failed executions were a result of less than desirable accuracy of 

the infrared proximity sensor on the end effector for estimating the 
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distance from the system to the goal object. Use of a more reliable 

sensing device would improve reliability of the system. Execution time 

for the “go to and pick up” task over 30 trials averaged 2 minutes and 

16 seconds with a standard deviation of 47 seconds. Minimum 

execution time was 28 seconds and maximum was 3 minutes and 37 

seconds. The variation in execution time depended on the amount of 

arm movement necessary during the grasping phase. Figure 5.7 shows 

the end of the task when the goal object has been delivered to the 

user sitting in the wheelchair.  

 

Figure 5.7: WMRA at the end of the ADL task
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Chapter 6 Discussion and Conclusion 

 

6.1 Discussion 

In this work, we have presented a control theory implementing 

visual servoing control on a 9-DoF mobile manipulator system for 

autonomous execution of ADL tasks. In this work, control of mobility 

and manipulation is combined and used simultaneously throughout the 

execution of ADL tasks. This provides a streamlined control system 

resulting in smooth and seamless physical operation for beginning to 

end autonomous execution of ADL tasks. During the final grasping 

phase, full 3-dimensional IBVS is used such that objects of virtually 

any position and orientation can be grasped.  

The advantages to autonomous execution of the demonstrated 

“go to and pick up” task are fairly obvious. Teleoperated control of the 

9-DoF WMRA system is difficult, even when used by able-bodied users. 

When users with reduced upper-body mobility teleoperate the system, 

this difficulty is greatly magnified. For extreme cases such as users 

that are locked in, the BCI must be used and teleoperation of the 

complex WMRA system results in a very great cognitive burden on the 
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user, and execution of the ADL task takes a very long period of time. 

By automating control of mobility and manipulation, macro tasks can 

be developed so that users only have to select an ADL activity they 

wish to execute.  

6.2 Conclusion 

The advantages to using vision-based control for the physical 

implementation of autonomous WMRA control are vast. By using visual 

servo control, inaccuracies of the hardware can be overcome. Vision-

based control also does not require that workspaces be as structured 

as in position-based control. Visual servoing is also robust against 

dynamic obstacles as well as noisy and cluttered environments. The 

physical results and high success of grasping for the vision-based 

approaches implemented in this work show that it is a very strong 

implementation for autonomous execution of ADL tasks.  

This work provides a control theory using full 3-dimensional 

IBVS implemented on a 9-DoF mobile manipulator. Mobility and 

manipulation are controlled in a combined manner such that they are 

used simultaneously throughout the control flow. This provides a very 

robust system that is streamlined and reliable for autonomous 

execution of macro ADL tasks.  
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6.3 Future Work 

Although we have successfully executed a very simple “go to and 

pick up” task, many other ADL tasks can be executed using the vision-

based control developed in this work for the 9-DoF WMRA system. In 

the future, macro tasks such as “go to and open the door” can be 

implemented using this work. A BCI interface (see Figure 6.1) is also 

being developed so that users can select macro tasks based on object 

recognition techniques. This would allow a user to select an area of the 

screen, and when the program detects the object they will be 

presented with a pool of ADL tasks to choose from.  

 

Figure 6.1: Sample BCI and interface screen 

Further research also involves doing human testing with both 

teleoperated and autonomous ADL tasks with the WMRA system. The 
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WMRA is unique in that there is always a human user on-board that 

the program can leverage knowledge from. Certain tasks are very 

difficult for computers to execute, such as object detection. However, 

humans can very easily detect objects with much greater accuracy. 

Human subject testing can help us to understand which parts of the 

ADL task are very difficult to teleoperate and should be automated, 

and which parts are very easy to teleoperate and should be done by 

the human user. 
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Appendix A Source Code 

Main Application 

#include <iostream> 

#include <fstream> 

#include <Afxwin.h> 

#include <stdlib.h> 

#include <malloc.h> 

#include <memory.h> 

#include <tchar.h> 

#include "controlMotor.h" 

#include "match.h" 

#include "wmraLJ.h" 

#include "main.h" 

#include "camshift.h" 

#include <cv.h> 

#include <cxcore.h> 

#include <highgui.h> 

 

 

#define dacm 15 //speed modifier for when batteries die down 

#define pwmStop 130 //idle speed PWM value for wheelchair 

#define Tmod 25 //gain to translation velocity control 

#define wmod 25 //gain to rotational velocity control 

#define tmaxv 10 //maximum translational velocity control 

#define wgain 1 //gain for sending the weight to WMRA Opt() 

 

int pwmX = 0, pwmY = 0; //wheelchair platform control 

int wmraEnd = 1; //end flag for WMRA control program 

extern float v; 

extern int choice6; //go back to ready position when 1 

extern int c; //flag for ending the camshift thread 

extern int cc; //flag for communicating camshift errors 

extern int track_object; //camshift, =0 no object tracked, =1 object  

tracked 

CvCapture *capture = 0; //pointer to camera object 

double centroidX = 0, centroidY = 0; //coordinates of center (2D) 

double wmraCtrl[10] = {0, 0, 0, 0, 0, 0, 0, 1, 135, 135}; 

double armWeight = 1; //weight for the arm during approach 

/*wmraCtrl[0] -> ARM forward (1)/backward(-1) Tz 

wmraCtrl[1] -> ARM left(1)/right(-1) Tx 

wmraCtrl[2] -> ARM up(1)/down(-1) Ty 

wmraCtrl[3] -> ARM yaw (.003/-.003) wz 

wmraCtrl[4] -> ARM roll (.003/-.003) wx 

wmraCtrl[5] -> ARM pitch (.003/-.003) wy 

wmraCtrl[6] -> ARM gripper open(-1)/close(1) 

To STOP arm and stay idle, set wmraCtrl[0...6]=0 

wmraCtrl[7] -> WMRA program exit(0)/run(1) 

wmraCtrl[8] -> PLATFORM forward(idle++)/backward(idle--) (PWM, 55-215) 

     135 idle, 135-165 forward, 105-135 backward 

wmraCtrl[9] -> PLATFORM right(idle++)/left(idle--) (PWM, 55-215) 

     135 idle, 135-165 right, 105-135 left 

To STOP platform and stay idle, wmraCtrl[8]=wmraCtrl[9]=135 

*/ 
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Appendix A (Continued) 

 

char *tempChar; //temporary char pointer passed to thread 

 

using namespace std; 

 

UINT camshiftThread (LPVOID pParam) 

{ 

 //thread for camshift process 

 if (camshift()) //calls the camshift object tracking program 

 { 

  cerr << "There was a problem starting the camshift thread!" <<  

endl; 

  return 1; 

 } 

 return 0; 

} 

 

UINT wmraThread (LPVOID pParam) 

{ 

 //thread for moving WMRA 

 wmraEnd = wmraControl(); //calls main WMRA program 

 //AfxEndThread(0); 

 return 0; 

} 

 

int main () 

{ 

 double prat[5] = {5,5,5,5,5}; 

 int xWeight=0, yWeight=0, xWeightI=0, count=0, flag=0, j=0; 

 int nxWeight=0, nyWeight=0, nv=0; 

 int numFeatures=0; //number of matched features 

 double Z=2.5; //distance from camera frame to goal object 

 double wphi=0, dacx=0; 

 double Tx=0, Ty=0, Tz=0, wx=0, wy=0, wz=0; //velocity controls from  

visual servoing system 

 IplImage *frame; //scene image 

 IplImage *templ = cvLoadImage ("crush.jpg", 1); //template image from  

file 

 int n1=0; 

 double *px; //x-coordinates of the goal image 

 double *py; //y-coordinates of the goal image 

 double *nx; //x-coordinates of the scene image 

 double *ny; //y-coordinates of the scene image 

 double *xd; //differences in x-direction (for e) 

 double *yd; //differences in y-direction (for e) 

 double *xx; //differences in x-direction (for x in Lx) 

 double *yy; //differences in y-direction (for y in Lx) 

 int *nf; //pointer to convert number of matched features 

 struct feature* feat1; 

 double *stats; 

double **viserv; 

 stats = (double *) malloc (3 * sizeof (double)); 

 stats[0] = 0; 

 stats[1] = 0; 
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Appendix A (Continued) 

stats[2] = 0; 

 clock_t start, end; 

 

 //<------------------------ START CAMSHIFT ------------------------> 

 cout << "Please select an object to track by left-clicking on a part  

of the object in the video feed..." << endl; 

 AfxBeginThread (camshiftThread, tempChar); 

 

 //<------------------------ START LAB JACK ------------------------> 

 cout << "Initializing platform..." << endl; 

 if (Initialize()) 

 { 

  cerr << "There was an error initializing the Lab Jack!" << endl; 

  return 1; 

 } 

 

 //set wheelchair to idle pwm initially 

 wmraCtrl[8] = pwmStop; 

 wmraCtrl[9] = pwmStop; 

 

 //<------------------------ START WMRA CODE ------------------------> 

 cout << "Initializing WMRA..." << endl; 

 AfxBeginThread (wmraThread, tempChar); 

 cout << "WMRA initialized..." << endl; 

 

 v = 25; //set initial WMRA arm speed 

 

 cout << "Platform initialized and idle motion set, is is now safe to  

turn on joystick..." << endl; 

 cout << "Joystick must be turned on within 10 seconds or before an  

object is selected, whichever is longer..." << endl; 

 

 Sleep(10000); //wait for everything to get settled, then start visual  

servoing 

 

 //check to see if object has been selected by user 

 if (track_object == 0) 

 { 

  while (!track_object) 

  { 

  } 

 } 

 

 Sleep(1000); 

 

 //set up file for printing out weights 

 fstream weights("weights.csv", ios::out); 

 weights << "wx,wphi,warm" << endl; //print header 

 

 cout << "Object has been selected and is now being tracked..." <<  

endl; 

 

 start = clock (); 
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Appendix A (Continued) 

 //<------------------------ APPROACH OBJECT ------------------------> 

 //control loop for initial visual servoing (approach object) 

 

 //set initial xweight 

 xWeightI = abs (320-centroidX); 

 

 //move platform forward 

 wmraCtrl[8] = pwmStop + 10; 

 

 if (GetAIN(4, Z)) //read I1 proximity sensor 

 { 

  cerr << "There was a problem reading I1 proximity sensor!" << endl; 

  wmraCtrl[8] = pwmStop; 

  wmraCtrl[9] = pwmStop; 

  return 1; 

 } 

 Z=0.5/Z; 

 armWeight = Z * wgain; //update the weights W for arm motion in Opt() 

 if (Z < 1) 

 { 

  dacx = Z; 

 } 

 else 

 { 

  dacx = 1; 

 } 

 

 while (Z > 0.3) //while distance threshold not reached 

 { 

  //compute velocity based on errors (distance from image center) 

  xWeight = abs (320-centroidX); 

  nxWeight = 320-centroidX; 

  yWeight = abs (240-centroidY); 

  nyWeight = 240-centroidY; 

 

  if (Z < 0.7) 

  { 

   v = (max(xWeight, yWeight))/5; //pick max/1.5 for velocity of  

arm 

  } 

  else 

  { 

   v = (max(xWeight, yWeight))/1.5; //pick max/1.5 for velocity of  

arm 

  } 

 

  if (xWeight > yWeight) 

  { 

   nv = nxWeight / 1.5; 

  } 

  else 

  { 

   nv = nyWeight / 1.5; 

  } 
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Appendix A (Continued) 

  //computing phi-weight for rotation of wheelchair 

  //if ((xWeight < 13) || (flag == 1)) 

  if (xWeight < 13) 

  { 

   wphi = 1; 

   flag = 1; 

  } 

  else 

  { 

   wphi = 0.000125 * ( (((xWeightI-xWeight)*(xWeightI- 

xWeight))*((xWeight+xWeightI)*(xWeight+xWeightI))) / 

((xWeightI*xWeightI)*xWeight)); 

  } 

 

  weights << dacm*dacx << ","; 

  weights << wphi << ","; 

 

  //if target has been lost, or is too small, then pause WMRA and  

prompt user to re-select target 

  if (cc < 0) 

  { 

   wmraCtrl[8] = pwmStop; 

   wmraCtrl[9] = pwmStop; 

   wmraCtrl[0] = 0; 

   wmraCtrl[1] = 0; 

   wmraCtrl[2] = 0; 

   wmraCtrl[3] = 0; 

   wmraCtrl[4] = 0; 

   wmraCtrl[5] = 0; 

 

   track_object = 0; 

 

   cout << "TARGET LOST, PLEASE RE-SELECT TARGET ON GUI!" << endl; 

 

   while (!track_object) 

   { 

    //do foo 

   } 

 

   Sleep (1000); 

  } 

 

  if ((dacm*dacx)<10) 

  { 

   wmraCtrl[8] = pwmStop + 10; 

  } 

  else 

  { 

   wmraCtrl[8] = pwmStop + (dacm * dacx); //move forward 

  } 

 

  if (count < 1000) //move arm forward for a bit 

  { 
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Appendix A (Continued) 

   wmraCtrl[0] = 1; 

  } 

  else //stop moving arm forward 

  { 

   wmraCtrl[0] = 0; 

  } 

 

  //modifying wheelchair movements for w-phi 

  //if (centroidX<240) 

  if (centroidX<270) 

  { 

   //move platform left 

   wmraCtrl[9] = pwmStop - (((1-wphi)*dacm)*dacx); 

  } 

  //else if (centroidX>400) 

  else if (centroidX>370) 

  { 

   //move platform right 

   wmraCtrl[9] = pwmStop + (((1-wphi)*dacm)*dacx); 

  } 

  else //centered in x-direction 

  { 

   //arm idle in x-direction 

   //wmraCtrl[9] = (1-wphi) = 0 

   wmraCtrl[9] = pwmStop; 

  } 

 

  if (centroidX<300) 

  { 

   //move arm left 

   wmraCtrl[1] = 1; 

  } 

  else if (centroidX>340) 

  { 

   //move arm right 

   wmraCtrl[1] = -1; 

  } 

  else //centered in x-direction 

  { 

   //arm idle in x-direction 

   wmraCtrl[1] = 0; 

  } 

 

  if (centroidY<220) 

  { 

   //move arm up 

   wmraCtrl[2] = 1; 

  } 

  else if (centroidY>260) 

  { 

   //move arm down 

   wmraCtrl[2] = -1; 

  } 

  else //centered in y-direction 
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Appendix A (Continued) 

  { 

   //arm idle in y-direction 

   wmraCtrl[2] = 0; 

  } 

 

  if (GetAIN(4, Z)) //read I1 proximity sensor 

  { 

   cerr << "There was a problem reading I1 proximity sensor!" <<  

endl; 

   wmraCtrl[8] = pwmStop; 

   wmraCtrl[9] = pwmStop; 

   return 1; 

  } 

  Z=0.5/Z; 

  armWeight = Z * wgain; //update the weights W for arm motion in  

Opt() 

  weights << armWeight << endl; //print the arm weights 

  if (Z < 1) 

  { 

   dacx = Z; 

  } 

  else 

  { 

   dacx = 1; 

  } 

 

  count++; //increment count for arm movement forward 

 } 

 

 v = 1; 

 armWeight = 0; 

 

 //set all motions back to idle 

 wmraCtrl[0] = 0; 

 wmraCtrl[1] = 0; 

 wmraCtrl[2] = 0; 

 wmraCtrl[3] = 0; 

 wmraCtrl[4] = 0; 

 wmraCtrl[5] = 0; 

 wmraCtrl[8] = pwmStop; 

 wmraCtrl[9] = pwmStop; 

 

 c = 27; //end camshift thread 

 

 cout << "System has now approached object." << endl; 

 

 cout << "Please wait, re-initializing camera..." << endl; 

 Sleep (2000); 

 capture = cvCaptureFromCAM(0); //only 1 camera used, we pass 0 

 if (!capture) 

 { 

  cerr << "There was an error opening camera. Program will  

terminate!" << endl; 

  return 1; 
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Appendix A (Continued) 

 } 

 

 cout << "Starting SIFT IBVS..." << endl; 

 

 //set up file for printing the velocity control 

 fstream velocity ("velocities.csv", ios::out); 

 velocity << "Tx,Ty,Tz,wx,wy,wz" << endl; //print header 

 

 //<------------------------ GRASP OBJECT ------------------------> 

 //control loop for initial visual servoing (approach object) 

 

 if (GetAIN(4, Z)) //read I1 proximity sensor 

 { 

  cerr << "There was a problem reading I1 proximity sensor!" << endl; 

  wmraCtrl[8] = pwmStop; 

  wmraCtrl[9] = pwmStop; 

  return 1; 

 } 

 Z=1/Z; 

 

 flag = 0; 

 

 //while (!flag) //while distance threshold not reached 

 while (Z > 0.41) 

 { 

  if (!templ) 

  { 

   cerr << "There was an error getting the template image!" <<  

endl; 

   return 1; 

  } 

 

  frame = cvRetrieveFrame (capture); 

 

  if (!frame) 

  { 

   cerr << "There was an error getting the frame image!" << endl; 

   return 1; 

  } 

 

  IplImage *framelow = cvCreateImage (cvSize (320, 240), frame- 

>depth, frame->nChannels); 

  //convert frame to 320x240 

  cvResize (frame, framelow, 1); 

 

  //stats = siftMatch (templ, framelow, &feat1, &n1); 

  viserv = siftMatch (templ, framelow, &feat1, &n1); 

 

  //grab all the data from viserv for local access here 

  px = viserv[0]; 

  py = viserv[1]; 

  nx = viserv[2]; 

  ny = viserv[3]; 

  xd = viserv[4]; 
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Appendix A (Continued) 

  yd = viserv[5]; 

  xx = viserv[6]; 

  yy = viserv[7]; 

  nf = (int *) viserv[8]; //cast double* to int* 

 

  //save number of matched features as int 

  numFeatures = *nf; 

 

  cout << "number matched features: " << numFeatures << endl; 

 

  if (numFeatures > 2) 

  { 

   CvMat *vc = cvCreateMat (6, 1, CV_32FC1); //velocity control 

   CvMat *Le = cvCreateMat (numFeatures*2, 6, CV_32FC1); //image  

Jacobian 

   CvMat *pLe = cvCreateMat (6, numFeatures*2, CV_32FC1); //pseudo- 

inverse of image Jacobian 

   CvMat *e = cvCreateMat (numFeatures*2, 1, CV_32FC1); //error  

matrix 

 

   j = 0; //j is additional counter for traversing pointers 

 

   for (int i=0; i<2*numFeatures; i+=2) 

   { 

    //set e: error matrix (2*nf,1) 

    cvmSet (e, i, 0, xd[j]); 

    cvmSet (e, i+1, 0, yd[j]); 

 

    //set Le: image Jacobian (2*nf,6) 

    cvmSet (Le, i, 0, -1/Z); 

    cvmSet (Le, i, 1, 0); 

    cvmSet (Le, i, 2, xx[j]/Z); 

    cvmSet (Le, i, 3, xx[j]*yy[j]); 

    cvmSet (Le, i, 4, -(1+xx[j]*xx[j])); 

    cvmSet (Le, i, 5, yy[j]); 

    cvmSet (Le, i+1, 0, 0); 

    cvmSet (Le, i+1, 1, -1/Z); 

    cvmSet (Le, i+1, 2, yy[j]/Z); 

    cvmSet (Le, i+1, 3, 1+yy[j]*yy[j]); 

    cvmSet (Le, i+1, 4, -xx[j]*yy[j]); 

    cvmSet (Le, i+1, 5, -xx[j]); 

 

    j++; //increment j 

   } 

 

   //compute pseudo-inverse of Le 

   cvInvert (Le, pLe, CV_SVD); 

 

   //compute vc=pLe*e 

   cvMatMul (pLe, e, vc); 

   //get the velocity controller data 

   Tx = cvmGet (vc, 0, 0); 

   Ty = cvmGet (vc, 1, 0); 

   Tz = cvmGet (vc, 2, 0); 
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   wx = cvmGet (vc, 3, 0); 

   wy = cvmGet (vc, 4, 0); 

   wz = cvmGet (vc, 5, 0); 

  } 

  else //not enough features matched, set to idle motion 

  { 

   Tx = 0; 

   Ty = 0; 

   Tz = 0; 

   wx = 0; 

   wy = 0; 

   wz = 0; 

  } 

 

  //modify velocity control using gains 

  Tx = -Tx/Tmod; 

  Ty = -Ty/Tmod; 

  Tz = Tz; 

  wx = -wx/wmod; 

  wy = -wy/wmod; 

  wz = wz/wmod; 

 

  //check to see if translational velocity exceeds maximum 

  if (abs(Tx) > tmaxv) 

  { 

   if (Tx < 0) 

   { 

    Tx = -tmaxv; 

   } 

   else 

   { 

    Tx = tmaxv; 

   } 

  } 

  if (abs(Ty) > tmaxv) 

  { 

   if (Ty < 0) 

   { 

    Ty = -tmaxv; 

   } 

   else 

   { 

    Ty = tmaxv; 

   } 

  } 

  if (abs(Tz) > tmaxv/2) 

  { 

   if (Tz < 0) 

   { 

    Tz = -tmaxv/2; 

   } 

   else 

   { 

    Tz = tmaxv/2; 
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   } 

  } 

 

  cout << "Tx: " << Tx << endl; 

  cout << "Ty: " << Ty << endl; 

  cout << "Tz: " << Tz << endl; 

  cout << "wx: " << wx << endl; 

  cout << "wy: " << wy << endl; 

  cout << "wz: " << wz << endl; 

 

  velocity << Tx << ","; 

  velocity << Ty << ","; 

  velocity << Tz << ","; 

  velocity << wx << ","; 

  velocity << wy << ","; 

  velocity << wz << endl; 

 

  //set motion for Tx 

  wmraCtrl[1] = Tx; 

 

  //set motion for Ty 

  wmraCtrl[2] = Ty; 

 

  //set motion for Tz 

  wmraCtrl[0] = Tz; 

 

  //set motion for wx 

  wmraCtrl[4] = wx; 

 

  //set motion for wy 

  wmraCtrl[5] = wy; 

 

  //set motion for wz 

  wmraCtrl[3] = wz; 

 

  //update previous ratios 

  prat[0] = prat[1]; 

  prat[1] = prat[2]; 

  prat[2] = prat[3]; 

  prat[3] = prat[4]; 

  prat[4] = Tz; 

 

  if ((abs(prat[0]) < .05) && (abs(prat[1]) < .05) && (abs(prat[2]) <  

.05) && (abs(prat[3]) < .05) && (abs(prat[4]) < .05)) 

  { 

   cout << prat[0] << " " << prat[1] << " " << prat[2] << " " <<  

prat[3] << " " << prat[4] << endl; 

   flag = 1; 

  } 

 

  if (GetAIN(4, Z)) //read I1 proximity sensor 

  { 

   cerr << "There was a problem reading I1 proximity sensor!" <<  

endl; 
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   wmraCtrl[8] = pwmStop; 

   wmraCtrl[9] = pwmStop; 

   return 1; 

  } 

  Z=1/Z; 

 

  cvReleaseImage (&framelow); 

 } 

 

 weights.close(); 

 velocity.close(); 

 

 v = 5; 

 

 //set all motions back to idle 

 wmraCtrl[0] = 1; 

 wmraCtrl[1] = 0; 

 wmraCtrl[2] = 0; 

 wmraCtrl[3] = 0; 

 wmraCtrl[4] = 0; 

 wmraCtrl[5] = 0; 

 wmraCtrl[8] = pwmStop; 

 wmraCtrl[9] = pwmStop; 

 

 //reach forward some to ensure grasp 

 Sleep (7000); 

 

 end = clock (); 

 

 cout << "Execution time is " << end - start << endl; 

 

 //set all motions back to idle 

 wmraCtrl[0] = 0; 

 wmraCtrl[1] = 0; 

 wmraCtrl[2] = 0; 

 wmraCtrl[3] = 0; 

 wmraCtrl[4] = 0; 

 wmraCtrl[5] = 0; 

 wmraCtrl[8] = pwmStop; 

 wmraCtrl[9] = pwmStop; 

 

 cout << endl << endl << "WARNING: JOYSTICK SHOULD BE TURNED OFF NOW!"  

<< endl << endl; 

 

 //close the gripper 

 //wmraCtrl[6] = 1; 

 //Sleep(8000); //close for 7 seconds 

 //wmraCtrl[6] = 0; 

 

 wmraCtrl[7] = 0; //stop WMRA arm motion 

 

 //Sleep(5000); 

 //choice6 = 1; //go back to ready position 
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 while (wmraEnd != 0) //wait for wmra thread to finish 

 { 

  //loop until WMRA thread is finished 

 } 

 

 cvReleaseCapture(&capture); //safely release OpenCV webcam feed 

 

 return 0; 

}  
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Camshift Tracking for Approach Phase Based on (21) 

/* This file is based on the camshift demo program bundled with 

the OpenCV 2.0 library and is based on the work in [21] */ 

 

#include <stdio.h> 

#include <ctype.h> 

#include <iostream> 

#include <string> 

#include "camshift.h" 

#include "cv.h" 

#include "highgui.h" 

 

extern CvCapture *capture; //pointer to camera object 

extern double centroidX, centroidY; 

IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, 

*histimg = 0; 

CvHistogram *hist = 0; 

int select_object = 0; 

int track_object = 0; 

int show_hist = 1; 

int c = 0; 

int cc = 0; 

CvPoint origin; 

CvRect selection; 

CvRect track_window; 

CvBox2D track_box; 

CvConnectedComp track_comp; 

int hdims = 16; 

float hranges_arr[] = {0,180}; 

float* hranges = hranges_arr; 

int vmin = 10, vmax = 256, smin = 30; 

 

using namespace std; 

 

void on_mouse (int event, int x, int y, int flags, void* param) 

{ 

    if( !image ) 

        return; 

 

    if( image->origin ) 

        y = image->height - y; 

 

    if( select_object ) 

    { 

  selection.width = 5; 

  selection.height = 5; 

  select_object = 0; 

  track_object = -1; 

    } 

 

    switch( event ) 

    { 

    case CV_EVENT_LBUTTONDOWN: 
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        origin = cvPoint(x,y); 

        selection = cvRect(x,y,0,0); 

        select_object = 1; 

        break; 

    } 

} 

 

CvScalar hsv2rgb (float hue) 

{ 

    int rgb[3], p, sector; 

    static const int sector_data[][3]= 

        {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}}; 

    hue *= 0.033333333333333333333333333333333f; 

    sector = cvFloor(hue); 

    p = cvRound(255*(hue - sector)); 

    p ^= sector & 1 ? 255 : 0; 

 

    rgb[sector_data[sector][0]] = 255; 

    rgb[sector_data[sector][1]] = 0; 

    rgb[sector_data[sector][2]] = p; 

 

    return cvScalar(rgb[2], rgb[1], rgb[0],0); 

} 

 

//========================================================== 

// camshift() is called by the main application. This  

// function initializes the camera and displays a video  

// feed. The user selects an object in the video display by  

// left-clicking and holding down while selecting the  

// object. The function then loops while updating the (x,y)  

// coordinates of the center. The coordinates (0,0) are  

// sent until the user selects an object in the window.  

// This information is used for the visual servoing in the  

// main application. Returns 1 for error condition.  

//========================================================== 

int camshift () 

{ 

 double differenceX=0, differenceY=0, prevX=0, prevY=0; 

 

 cout << "Please wait, initializing camera..." << endl; 

 

    capture = cvCaptureFromCAM( 0 ); 

 

    if(!capture) 

    { 

        cerr << "Could not initialize capturing..." << endl; 

        return 1; 

    } 

 

    cvNamedWindow( "CamShiftDemo", 1 ); 

    cvSetMouseCallback( "CamShiftDemo", on_mouse, 0 ); 

 

    for(;;) 

    { 
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        IplImage* frame = 0; 

        int i, bin_w; 

 

        frame = cvQueryFrame( capture ); 

        if( !frame ) 

            break; 

 

        if( !image ) 

        { 

            /* allocate all the buffers */ 

            image = cvCreateImage( cvGetSize(frame), 8, 3 ); 

            image->origin = frame->origin; 

            hsv = cvCreateImage( cvGetSize(frame), 8, 3 ); 

            hue = cvCreateImage( cvGetSize(frame), 8, 1 ); 

            mask = cvCreateImage( cvGetSize(frame), 8, 1 ); 

            backproject = cvCreateImage( cvGetSize(frame), 8, 1 ); 

            hist = cvCreateHist(1,&hdims,CV_HIST_ARRAY,&hranges,1); 

            histimg = cvCreateImage( cvSize(320,200), 8, 3 ); 

            cvZero( histimg ); 

        } 

 

        cvCopy( frame, image, 0 ); 

        cvCvtColor( image, hsv, CV_BGR2HSV ); 

 

        if( track_object ) 

   { 

            int _vmin = vmin, _vmax = vmax; 

 

            cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0), 

                        cvScalar(180,256,MAX(_vmin,_vmax),0), mask ); 

            cvSplit( hsv, hue, 0, 0, 0 ); 

 

            if( track_object < 0 ) 

            { 

                float max_val = 0.f; 

                cvSetImageROI( hue, selection ); 

                cvSetImageROI( mask, selection ); 

                cvCalcHist( &hue, hist, 0, mask ); 

                cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 ); 

                cvConvertScale( hist->bins, hist->bins, max_val ?  

255. / max_val : 0., 0 ); 

                cvResetImageROI( hue ); 

                cvResetImageROI( mask ); 

                track_window = selection; 

                track_object = 1; 

 

                cvZero( histimg ); 

                bin_w = histimg->width / hdims; 

                for( i = 0; i < hdims; i++ ) 

                { 

                    int val = cvRound( cvGetReal1D(hist-

>bins,i)*histimg->height/255 ); 

                    CvScalar color = hsv2rgb(i*180.f/hdims); 
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                    cvRectangle( histimg, cvPoint(i*bin_w,histimg-

>height), 

                                 cvPoint((i+1)*bin_w,histimg->height 

- val), 

                                 color, -1, 8, 0 ); 

                } 

            } 

 

            cvCalcBackProject( &hue, backproject, hist ); 

            cvAnd( backproject, mask, backproject, 0 ); 

            cvCamShift( backproject, track_window, 

                        cvTermCriteria( CV_TERMCRIT_EPS | 

CV_TERMCRIT_ITER, 10, 1 ), 

                        &track_comp, &track_box ); 

            track_window = track_comp.rect; 

 

            if( !image->origin ) 

                track_box.angle = -track_box.angle; 

            cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, 

CV_AA, 0 ); 

        } 

 

        if( select_object && selection.width > 0 && selection.height 

> 0 ) 

        { 

            cvSetImageROI( image, selection ); 

            cvXorS( image, cvScalarAll(255), image, 0 ); 

            cvResetImageROI( image ); 

        } 

 

        cvShowImage( "CamShiftDemo", image ); 

 

  //Save the previous centroid to compute the difference 

  prevX = centroidX; 

  prevY = centroidY; 

  //save center coordinates to global variable 

  centroidX = track_box.center.x; 

  centroidY = track_box.center.y; 

 

  //compute the difference between previous and current centroid 

  differenceX = abs (prevX - centroidX); 

  differenceY = abs (prevY - centroidY); 

 

  //if difference is too great, then send error values 

  if (differenceX > 20 || differenceY > 20) 

  { 

   cc = -5; 

  } 

  else 

  { 

   cc = 0; 

  } 

 

  cvWaitKey (10); 
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  if (c == 27) 

  { 

   break; 

  } 

    } 

 

    cvReleaseCapture( &capture ); 

    cvDestroyWindow("CamShiftDemo"); 

 

    return 0; 

} 
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SIFT Tracking for Grasping Phase Based on (22) 

/* 

Detects SIFT features in two images and finds matches between them. 

 

Copyright (C) 2006-2010  Rob Hess <hess@eecs.oregonstate.edu> 

 

@version 1.1.2-20100521 

*/ 

 

#include "match.h" 

#include "sift.h" 

#include "imgfeatures.h" 

#include "kdtree.h" 

#include "utils.h" 

#include "xform.h" 

 

#include <cv.h> 

#include <cxcore.h> 

#include <highgui.h> 

 

#include <stdio.h> 

#include <math.h> 

 

 

/* the maximum number of keypoint NN candidates to check during BBF 

search */ 

#define KDTREE_BBF_MAX_NN_CHKS 200 

 

/* threshold on squared ratio of distances between NN and 2nd NN */ 

#define NN_SQ_DIST_RATIO_THR 0.49 

 

/******************************** Globals 

************************************/ 

 

//char img1_file[] = "glass.pgm"; 

//char img2_file[] = "scene1.pgm"; 

//extern double xdiff, ydiff, ratio; 

 

/********************************** Main 

*************************************/ 

 

double ** siftMatch(IplImage* img1, IplImage* img2, struct feature** 

ffeat1, int *pn1) 

{ 

 struct feature* feat1 = *ffeat1; 

 int n1 = *pn1; 

 IplImage* stacked = stack_imgs(img1, img2); 

 struct feature * feat2, * feat; 

 struct feature** nbrs; 

 struct kd_node* kd_root; 

 CvPoint pt1, pt2; 

 double d0, d1; 

 int n2, k, i, j, l, adjnf=0, m = 0, mm=0; 
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 int nminx=1280, nnminx=1280, nminy=1280, nnminy=1280, nmaxx=0,  

nmaxy=0, cenx, ceny; 

 int flag=0; 

 double xtot=0, ytot=0, xtota=0, ytota=0; 

 double *px; //x-coordinates of the goal image 

 double *py; //y-coordinates of the goal image 

 double *nx; //x-coordinates of the scene image 

 double *ny; //y-coordinates of the scene image 

 double *apx; //adjusted x-coordinates of the goal image 

 double *apy; //adjusted y-coordinates of the goal image 

 double *anx; //adjusted x-coordinates of the scene image 

 double *any; //adjusted y-coordinates of the scene image 

 double *xd; //differences in x-direction (for e) 

 double *yd; //differences in y-direction (for e) 

 double *xx; //differences in x-direction (for x in Lx) 

 double *yy; //differences in y-direction (for y in Lx) 

 int *nf; //number of matched features 

 double **viserv; //pointer to the pointers for visual servoing data 

 double mincx=1280; 

 double mincy=1280; 

 int jxy; 

 

 if (!n1) 

 { 

  n1 = sift_features( img1, &feat1 ); 

 } 

 n2 = sift_features( img2, &feat2 ); 

 kd_root = kdtree_build( feat2, n2 ); 

 

 px = (double *) malloc (n1 * sizeof (double)); 

 py = (double *) malloc (n1 * sizeof (double)); 

 nx = (double *) malloc (n1 * sizeof (double)); 

 ny = (double *) malloc (n1 * sizeof (double)); 

 nf = (int *) malloc (sizeof (int)); 

 viserv = (double **)malloc((8 * n1 * sizeof (double))+sizeof (int)); 

 

 for( i = 0; i < n1; i++ ) 

 { 

  feat = feat1 + i; 

  k = kdtree_bbf_knn(kd_root,feat,2,&nbrs,KDTREE_BBF_MAX_NN_CHKS); 

  if( k == 2 ) 

  { 

   d0 = descr_dist_sq( feat, nbrs[0] ); 

   d1 = descr_dist_sq( feat, nbrs[1] ); 

   if( d0 < d1 * NN_SQ_DIST_RATIO_THR ) 

   { 

    pt1 = cvPoint( cvRound( feat->x ), cvRound( feat->y ) ); 

    pt2 = cvPoint( cvRound( nbrs[0]->x ), cvRound( nbrs[0]->y ) ); 

 

    //Find min and max values of matched features in the scene  

image 

    if (nbrs[0]->x < nminx) 

    { 

     nminx = cvRound(nbrs[0]->x); 
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    } 

    if (nbrs[0]->x > nmaxx) 

    { 

     nmaxx = cvRound(nbrs[0]->x); 

    } 

    if (nbrs[0]->y < nminy) 

    { 

     nminy = cvRound(nbrs[0]->y); 

    } 

    if (nbrs[0]->y > nmaxy) 

    { 

     nmaxy = cvRound(nbrs[0]->y); 

    } 

    pt2.y += img1->height; 

    cvLine( stacked, pt1, pt2, CV_RGB(255,0,255), 1, 8, 0 ); 

 

    //save x- and y-coordinates for goal image 

    px[m] = feat->x; 

    py[m] = feat->y; 

 

    //save x- and y-coordinates for scene image 

    nx[m] = nbrs[0]->x; 

    ny[m] = nbrs[0]->y; 

 

    //compute x- and y-differences and update running total for  

average 

    xtot = xtot + (feat->x - nbrs[0]->x); 

    ytot = ytot + (feat->y - nbrs[0]->y); 

 

    cvCircle(img2, cvPoint(cvRound(nbrs[0]->x),cvRound(nbrs[0]- 

>y)), 1, CV_RGB(255,0,0), 2, 8, 0); 

    m++; 

    feat1[i].fwd_match = nbrs[0]; 

   } 

  } 

  free( nbrs ); 

 } 

 

 if (m > 0) //if there are some features, then process them and remove  

outliers 

 { 

  //malloc for adjusted x,y data based on number of matched features 

  xd = (double *) malloc (m * sizeof (double)); 

  yd = (double *) malloc (m * sizeof (double)); 

  xx = (double *) malloc (m * sizeof (double)); 

  yy = (double *) malloc (m * sizeof (double)); 

  apx = (double *) malloc (m * sizeof (double)); 

  apy = (double *) malloc (m * sizeof (double)); 

  anx = (double *) malloc (m * sizeof (double)); 

  any = (double *) malloc (m * sizeof (double)); 

 

  //compute the centroid of the scene image features 

  cenx = ((nmaxx - nminx) / 2) + nminx; 

  ceny = ((nmaxy - nminy) / 2) + nminy; 
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  cvCircle(img2, cvPoint(cenx,ceny), 1, CV_RGB(0,255,0), 2, 8, 0); 

 

  //loop through to find feature point closest to centroid 

  for (j=0; j<m; j++) 

  { 

   if ((abs(nx[j]-cenx) < mincx) && (abs(ny[j]-ceny) < mincy)) 

   { 

    mincx = abs(nx[j]-cenx); 

    mincy = abs(ny[j]-ceny); 

    jxy = j; 

   } 

  } 

  //save closest feature point to adjusted points 

  apx[adjnf] = px[jxy]; 

  apy[adjnf] = py[jxy]; 

  anx[adjnf] = nx[jxy]; 

  any[adjnf] = ny[jxy]; 

  xd[adjnf] = px[jxy]-nx[jxy]; 

  yd[adjnf] = py[jxy]-ny[jxy]; 

  xx[adjnf] = nx[jxy]-160; 

  yy[adjnf] = ny[jxy]-120; 

  adjnf++; 

 

  //loop through to get rid of outliers 

  for (j=0; j<m; j++) 

  { 

   for (l=0; l<adjnf; l++) 

   { 

    if ((nx[j] < anx[l]+20 && nx[j] > anx[l]-20) && (ny[j] <  

any[l]+20 && ny[j] > any[l]-20)) 

    { 

     cvCircle (img2, cvPoint (cvRound (nx[j]), cvRound (ny[j])),  

1, CV_RGB(0,0,255), 2, 8, 0); 

     apx[adjnf] = px[j]; 

     apy[adjnf] = py[j]; 

     anx[adjnf] = nx[j]; 

     any[adjnf] = ny[j]; 

     xd[adjnf] = px[j]-nx[j]; 

     yd[adjnf] = py[j]-ny[j]; 

     xx[adjnf] = nx[j]-160; 

     yy[adjnf] = ny[j]-120; 

     adjnf++; 

     break; 

    } 

   } 

  } 

  //adjnf is now the adjusted number of features, apx/y and anx/y  

contain adjusted matched features 

 

  nf[0] = adjnf; //save number of matched features 

 

  //save pointers into viserv to return to application 

  viserv[0] = apx; 

  viserv[1] = apy; 
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  viserv[2] = anx; 

  viserv[3] = any; 

  viserv[4] = xd; 

  viserv[5] = yd; 

  viserv[6] = xx; 

  viserv[7] = yy; 

  viserv[8] = nf; 

 } 

 else //give dummy pointer data 

 { 

  //malloc for adjusted x,y data based on number of matched features 

  xd = (double *) malloc (sizeof (double)); 

  yd = (double *) malloc (sizeof (double)); 

  xx = (double *) malloc (sizeof (double)); 

  yy = (double *) malloc (sizeof (double)); 

  apx = (double *) malloc (sizeof (double)); 

  apy = (double *) malloc (sizeof (double)); 

  anx = (double *) malloc (sizeof (double)); 

  any = (double *) malloc (sizeof (double)); 

 

  //give it dummy data 

  xd[0] = 0; 

  yd[0] = 0; 

  xx[0] = 0; 

  yy[0] = 0; 

  apx[0] = 0; 

  apy[0] = 0; 

  anx[0] = 0; 

  any[0] = 0; 

 

  adjnf = 1; 

 

  nf[0] = adjnf; //save number of matched features 

 

  //save pointers into viserv to return to application 

  viserv[0] = apx; 

  viserv[1] = apy; 

  viserv[2] = anx; 

  viserv[3] = any; 

  viserv[4] = xd; 

  viserv[5] = yd; 

  viserv[6] = xx; 

  viserv[7] = yy; 

  viserv[8] = nf; 

 } 

 

 cvNamedWindow("Scene", 1); 

 cvShowImage("Scene", img2); 

 cvNamedWindow( "Matches", 1 ); 

 cvShowImage( "Matches", stacked ); 

 flag = cvWaitKey( 1 ); 

 

 cvWaitKey(1); 
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 cvReleaseImage( &stacked ); 

 kdtree_release( kd_root ); 

 free( feat2 ); 

 *pn1 = n1; 

 *ffeat1 = feat1; 

 return viserv; 

} 
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